

CDF

C Reference Manual

Version 2.7, September 1, 1999

National Space Science Data Center

Copyright  2002 NASA/GSFC/NSSDC
National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

DECnet - NSSDCA::CDFSUPPORT
Internet - cdfsupport@nssdca.gsfc.nasa.gov

Contents

Chapter 1.. 1

Compiling.. 1
1.1 Specifying cdf.h Location in the Compile Command .. 1

1.1.1 VMS/OpenVMS Systems .. 1
1.1.2 UNIX Systems ... 1
1.1.3 MS-DOS Systems, Borland C.. 2
1.1.4 Windows NT/95/98 Systems, Microsoft Visual C++... 2
1.1.5 Macintosh Systems, CodeWarrior C/C++.. 3
1.1.6 Macintosh Systems, MPW C ... 4

1.2 Specifying cdf.h Location in the Source File ... 4
Chapter 2.. 5

Linking.. 5
2.1 VAX/VMS & VAX/OpenVMS Systems ... 5
2.2 DEC Alpha/OpenVMS Systems .. 5
2.3 UNIX Systems ... 6

2.3.1 Combining the Compile and Link .. 6
2.4 WINDOWS NT/95/98 SYSTEMS, MICROSOFT VISUAL C++ .. 6
2.5 MS-DOS Systems, Borland C.. 7
2.6 Macintosh Systems, CodeWarrior C/C++.. 7
2.7 Macintosh Systems, MPW ... 7

Chapter 3.. 9

Linking Shared CDF Library.. 9
3.1 VAX (VMS & OpenVMS) .. 9
3.2 DEC Alpha (OpenVMS) .. 10
3.3 Sun (SunOS) .. 10
3.4 SUN (SOLARIS) ... 10
3.5 HP 9000 (HP-UX).. 11
3.6 IBM RS6000 (AIX).. 11
3.7 DEC Alpha (OSF/1)... 11
3.8 SGi (IRIX 5.x & 6.x).. 11
3.9 Linux (PC & Power PC) .. 11
3.10 Windows (NT/95/98) ... 12
3.11 Macintosh (MacOS) ... 12

Chapter 4.. 13

Programming Interface.. 13
4.1 Item Referencing.. 13
4.2 Defined Types .. 13
4.3 CDFstatus Constants .. 13
4.4 CDF Formats.. 14
4.5 CDF Data Types... 14
4.6 Data Encodings .. 15
4.7 Data Decodings .. 16
4.8. Variable Majorities... 17

4.9 Record/Dimension Variances... 17
4.10 Compressions ... 18
4.11 Sparseness .. 18

4.11.1 Sparse Records ... 18
4.11.2 Sparse Arrays ... 19

4.12 Attribute Scopes ... 19
4.13 Read-Only Modes .. 19
4.14 zModes... 19
4.15 -0.0 to 0.0 Modes ... 20
4.16 Operational Limits ... 20
4.17 Limits of Names and Other Character Strings ... 20

Chapter 5.. 21

Standard Interface.. 21
5.1 CDFcreate .. 21

5.1.1 Example(s) ... 22
5.2 CDFopen .. 22

5.2.1 Example(s) ... 23
5.3 CDFdoc .. 23

5.3.1 Example(s) ... 24
5.4 CDFinquire... 24

5.4.1 Example(s) ... 25
5.5 CDFclose.. 26

5.5.1 Example(s) ... 26
5.6 CDFdelete .. 26

5.6.1 Example(s) ... 27
5.7 CDFerror .. 27

5.7.1 Example(s) ... 28
5.8 CDFattrCreate .. 28

5.8.1 Example(s) ... 28
5.9 CDFattrNum... 29

5.9.1 Example(s) ... 29
5.10 CDFattrRename.. 30

5.10.1 Example(s) ... 30
5.11 CDFattrInquire ... 31

5.11.1 Example(s) ... 31
5.12 CDFattrEntryInquire .. 32

5.12.1 Example(s) ... 33
5.13 CDFattrPut ... 33

5.13.1 Example(s) ... 34
5.14 CDFattrGet... 35

5.14.1 Example(s) ... 35
5.15 CDFvarCreate .. 36

5.15.1 Example(s) ... 37
5.16 CDFvarNum... 38

5.16.1 Example(s) ... 38
5.17 CDFvarRename.. 39

5.17.1 Example(s) ... 39
5.18 CDFvarInquire ... 40

5.18.1 Example(s) ... 40
5.19 CDFvarPut ... 41

5.19.1 Example(s) ... 41
5.20 CDFvarGet ... 42

5.20.1 Example(s) ... 43
5.21 CDFvarHyperPut.. 43

5.21.1 Example(s) ... 44

5.22 CDFvarHyperGet ... 45
5.22.1 Example(s) ... 46

5.23 CDFvarClose.. 47
5.23.1 Example(s) ... 47

5.24 CDFgetrVarsRecordData ... 48
5.24.1 Example(s) ... 48

5.25 CDFputrVarsRecordData ... 49
5.25.1 Example(s) ... 50

5.26 CDFgetzVarsRecordData... 51
5.26.1 Example(s) ... 51

5.27 CDFputzVarsRecordData... 52
5.27.1 Example(s) ... 53

Chapter 6.. 56

Internal Interface – CDFlib.. 56
6.1 Example(s) ... 56
6.2 Current Objects/States (Items) ... 58
6.3 Returned Status .. 62
6.4 Indentation/Style .. 62
6.5 Syntax .. 62
6.6 Operations. 63
6.7 More Examples .. 117

6.7.1 rVariable Creation.. 117
6.7.2 zVariable Creation (Character Data Type)... 118
6.7.3 Hyper Read with Subsampling... 118
6.7.4 Attribute Renaming.. 119
6.7.5 Sequential Access... 120
6.7.6 Attribute rEntry Writes... 121
6.7.7 Multiple zVariable Write ... 121

6.8 A Potential Mistake We Don't Want You to Make .. 122
6.9 Custom C Functions... 123

Chapter 7.. 124

Interpreting CDF Status Codes.. 124
Chapter 8.. 126

EPOCH Utility Routines... 126
8.1 computeEPOCH... 126
8.2 EPOCHbreakdown... 126
8.3 encodeEPOCH ... 127
8.4 encodeEPOCH1 ... 127
8.5 encodeEPOCH2 ... 127
8.6 encodeEPOCH3 ... 128
8.7 encodeEPOCHx ... 128
8.8 parseEPOCH .. 129
8.9 parseEPOCH1 .. 129
8.10 parseEPOCH2 .. 129
8.11 parseEPOCH3 .. 130

Appendix A.. 132

Status Codes.. 132
A.1 Introduction.. 132

A.2 Status Codes and Messages.. 132

Appendix B .. 142

C Programming Summary.. 142
B.1 Standard Interface .. 142
B.2 Internal Interface .. 146
B.3 EPOCH Utility Routines .. 153

Index.. 154

Chapter 1

Compiling

Each source file that calls the CDF library or references CDF parameters must include cdf.h. on VMS systems a logical
name, CDF$INC, that specifies the location of cdf.h is defined in the definitions file, DEFINITIONS.COM, provided
with the CDF distribution. on UNIX systems an environment variable, CDF INC, that serves the same purpose is
defined in the definitions file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-
shell (csh and tcsh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section
assumes that you are using the appropriate definitions file on those systems. on MS-DOS and Macintosh (MacOS)
systems, definitions files are not available. The location of cdf.h is specified as described in the appropriate sections
for those systems.

One of two methods may be used to include cdf.h. They are described in the following sections.

1.1 Specifying cdf.h Location in the Compile Command

The first method involves including the following line at/near the top of each source file:

#include "cdf.h"

Since the file name of the disk/directory containing cdf.h was not specified, it must be specified when the source file is
compiled.

1.1.1 VMS/OpenVMS Systems

An example of the command to compile a source file on VMS/OpenVMS systems would be as follows:

$ CC/INCLUDEFIDIRECTORY=CDF$INC <source-name>

where <source-name> is the name of the source file being compiled. (The .C extension does not have to be specified.)
The object module created will be named source-name>.OBJ.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-
precision floating-point representation of D_FLOAT, you will also have to specify /FLOAT=D_FLOAT on the CC
command line in order to correctly process double-precision floating-point values.

1.1.2 UNIX Systems

1

An example of the command to compile a source file on UNIX flavored systems would be as follows:

% cc -c -I${CDF_INC} <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required). The -c option
specifies that only an object module is to be produced. (The link step is described in Section 2.3.) The object module
created will be named <source-name>.o. Note that in a “makefile” where CDF INC is imported, $(CDF_INC) would
be specified instead of ${CDF_INC}.

1.1.3 MS-DOS Systems, Borland C

An example of the command to compile a source file on MS-DOS systems using Borland C would be as follows:

> BCC -c -ml -I<inc-path> <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required) and <inc-path> is
the file name of the directory containing cdf.h. You will need to know where on your system cdf.h has been installed.
<inc-path> may be either an absolute or relative file name.

You may also need to specify the location of system include files. For Borland C it may be necessary to also specify -
I<bc-inc-path> where <bc-inc-path> is the location of the Borland C system include files. Consult the Borland C
documentation for more information.

The -c option specifies that only an object module is to be produced. (The link step and a combined compile/link step
are described in Section 2.5.) The object module will be named <source-name>.obj.

The -ml option specifies that the object module is to be compiled using the large memory model. The CDF library for
Borland C supplied with the CDF distribution is compiled using the large memory model. If you need to use the huge
memory model for your application, you will also need to rebuild the CDF library for the huge memory model.

You may instead want to use the Borland Integrated Developers Environment (IDE) to compile/link your applications.
The options shown above for the command line compiler are specified in the development environment. Consult the
documentation for the IDE for the steps necessary to compile/link your application.

1.1.4 Windows NT/95/98 Systems, Microsoft Visual C++

An example of the command to compile a source file on Windows NT/95/98 systems using Microsoft Visual C++
would be as follows. It is extracted from an NMAKE file, generated by Microsoft Developer Studio for Visual C++, to
compile the CDF library source code.

> CL /c /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_WINDOWS" /D "FSI" /D "_MBCS"
 /I<inc-path> <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required) and <inc-path> is
the file name of the directory containing cdf.h. You will need to know where on your system cdf.h has been installed.
<inc-path> may be either an absolute or relative file name.

You may also need to specify the location of system include files. For Microsoft Visual C++ this is usually
accomplished by setting MS-DOS environment variables, e.g., execute VCVARS32.BAT for VC++.

The /c option specifies that only an object module is to be produced. The object module will be named
<source-name>.obj.

2

The /nologo option specifies that the copyright message is suppressed.

The /W3 option specifies the warning level for compiling.

The /Gm option specifies that minimal rebuild is enabled.

The /GX option specifies that C++ EH is enabled.

The /ZI option specifies that edit/continue debug information is enabled.

The /Od option specifies that optimization is disbaled.

The predefined macros are: WIN32, WINDOWS, FSI, MBCS.

Consult the documents for Microsoft Visual C++. or, contact CDFsupport@nssdca.gsfc.nasa.gov for inquiries.

Projects and project workspaces are created to compile the source code for the CDF library and its toolkit programs.
All distributed libraries (static and dynamic) as well as the executables for toolkit programs for WIN32 are created by
the Microsoft Visual C++.

For compiling the library, the following settings are used:

General: Not using MFC

C/C++: WIN32, _DEBUG, _MBCS, _LIB: defined for Preprocessor definitions.

/nologo /MLd /W3 /Gm /GX /ZI /0d /YX /FD /GZ /c: defined for options.

Library: /nologo /out:libcdf.lib: defined for options.

Resources: /l 0x409: defined for options

For compiling/linking the toolkit programs, the following settings are used:

C/C++: WIN32, _DEBUG, _MBCS, _WINDOWS, FSI: defined for Preprocessor definitions.
/nologo /MTd /W3 /Gm /GX /ZI /0d /FD /GZ /c: defined for options.

Link: /nologo /subsystem: windows /incremental: yes /machine: I386

/out:"xxxxxx.exe": defined for options. (xxxxxx is either CDFfsi or CDFso)

Resources: /l 0x409: defined for options.

MIDL: /nologo /mktyplib203 /win32

Consult the documentation for the Microsoft Visual C++ for the steps necessary to build a project/workspace
and compile/link your application. or, contact CDFsupport@nssdca.gsfc.nasa.gov for the Microsoft Devel-
oper Studio generated NMAKE files that are used by the CDF distribution for Win32.

1.1.5 Macintosh Systems, CodeWarrior C/C++

CodeWarrior's C/C++, along with its Integrated Development Environment (IDE), is used to compile/link the CDF
library and toolkit programs. The distributed static and dynamic libraries as well as the executeables (for 68K and
Power PC) for the toolkit programs are all created through the CodeWarrior.

You should set the following CodeWarrior C/C++ compile options:

1. Make sure the Pre_x Filefield is blank in C/C++ Language panel for Language Settings.
2. For 68K Processor, check boxes for 4-Byte Ints, 8-Byte Doubles, Far Data, Far Method Tables, Far

3

String Constants in the 68K Processor panel for Code Generation.

Consult the documentation for the CodeWarrior for the steps necessary to build a project. or contact
CDFsupport@nssdca.gsfc.nasa.gov for all of the project settings.

1.1.6 Macintosh Systems, MPW C

Macintosh Programmer's Workshop (MPW) C uses a command line instruction to compile source files. This command
may be entered either on the MPW Worksheet or in An MPW makefile. An example of the command to compile a
source file using MPW C would be as follows:

C -i <inc-path> -model far <source-name>.c

where <source-name>.c is the name of the source file being compiled and <inc-path> is an absolute or relative file
name of the folder containing cdf.h. You will need to know where on your system cdf.h has been installed. File names
on a Macintosh are constructed by separating volume/folder names with colons and terminating the file name with a
colon if it is a folder rather than a file (e.g., Disk1:cdf26-dist:include:). The name of the object module produced will
be <source-name>.c.o in the current directory. Note that this example also assumes that <source-name>.c is in the
current directory.

The -model far option indicates that the 32K restrictions on the size of code segments, the jump table, and the global
data area are to be removed. This option is necessary in order to successfully link to the CDF library provided for
MPW applications. (See Section 2.7.)

If your application is fairly large, you may also find it necessary to use the -s option to place your compiled source code
(object modules) into separate segments when linked. Consult the MPW C documentation for more details.

1.2 Specifying cdf.h Location in the Source File

The second method involves specifying the file name of the directory containing cdf.h in the actual source file. The
following line would be included at/near the top of each source file:

#include "<inc-path>cdf.h"

where <inc-path> is the file name of the directory containing cdf.h. The source file would then be compiled as shown
in Section 1.1 but without specifying the location of cdf.h on the command line (where applicable).

On VMS systems CDF$INC: may be used for <inc-path>. on UNIX, MS-DOS, and Macintosh systems, <inc-path>
must be a relative or absolute file name. (An environment variable may not be used for <inc-path> on UNIX systems.)
You will need to know where on your system the cdf.h file has been installed. on Macintosh systems, file names are
constructed by separating volume/folder names with colons.

4

Chapter 2

Linking

Your applications must be linked with the CDF library.1 Both the Standard and Internal interfaces for C applications
are built into the CDF library. On VMS systems a logical name, CDF$LIB, which specifies the location of the CDF
library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions file definitions.<shell-
type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH,
and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the appropriate definitions
file on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not available. The location
of the CDF library is specified as described in the appropriate sections for those systems.

2.1 VAX/VMS & VAX/OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on VAX/VMS and
VAX/OpenVMS systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

It may also be necessary to specify SYS$LIBRARY:VAXCRTL/LIBRARY at the end of the LINK command if your
system does not properly define LNK$LIBRARY (or LNK$LIBRARY_1, etc.).

2.2 DEC Alpha/OpenVMS Systems

1 A shareable version of the CDF library is also available on VMS and some flavors of UNIX. Its use is described in
Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on MS-DOS systems for Microsoft and Borland
Windows applications. Consult the Microsoft and Borland documentation for details on using a DLL. Note that the
DLL for Microsoft is created using Microsoft C 7.00.

5

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY, SYS$LIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

2.3 UNIX Systems
An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

% cc <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.o is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the –o option. Some UNIX
systems may also require that -lc (the C run-time library), -lm (the math library), and/or -ldl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of
${CDF_LIB}.

2.3.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% cc -I${CDF_INC} <source-name(s)>.c ${CDF_LIB}/libcdf.a

where <source-name(s)>.c is the name of the source file(s) being compiled/linked. (The .c extension is required.)
Some UNIX systems may also require that -lc, -lm, and/or -ldl be specified at the end of the command line.

2.4 WINDOWS NT/95/98 SYSTEMS, MICROSOFT VISUAL C++

An example of the command to link your application with the CDF library (LIBCDF.LIB) on Windows NT/95/98
systems using Microsoft Visual C++ would be as follows:2

> LINK /nologo /subsystem:windows /incremental:no /machine:I386
 /out:where_to.exe <objs> <lib-path>libcdf.lib

where <objs> is your application's object module(s); <where to.exe> is the name of the executable file to be created
(with an extension of .exe); and <lib-path> is the file name of the directory containing the CDF library. You will need
to know where on your system the CDF library has been installed. <lib-path> may be either an absolute or relative
directory name that contains libcdf.lib.

2 This example is extracted from an NMAKE file, created by Microsoft Developer Studio, for compiling/linking the
toolkit programs.

6

Consult the manuals for Microsoft Visual C++ to set up the proper project/workspace to compile/link your applications.
Please contact CDFsupport@nssdca.gsfc.nasa.gov for the project or NMAKE files that were used to create CDF
libraries and executables for the distribution.

2.5 MS-DOS Systems, Borland C

An example of the command to link your application with the CDF library (LIBCDF.LIB) on MS-DOS systems using
Borland C would be as follows:

> TLINK /x /L<bc>\lib C0L <object-file(s)>,<executable>,,
 <lib-path>libcdf.lib CL EMU MATHL

where<object-file(s)> is your application's object module(s) (the .obj extension is not necessary); <executable> is the
name of the executable file to be created (with a default extension of .exe); and <lib-path> is the file name of the
directory containing the CDF library. You will need to know where on your system the CDF library has been installed.
<inc-path> may be either an absolute or relative file name.

<bc> is the directory path of your Borland C software installation top-level directory. This allows Borland C to find
the necessary startup module (C0L) and system libraries (CL, EMU, and MATHL). This example assumes you are
using the large memory model. (If the huge memory model were being used, C0H and MATHH would have been
specified instead of C0L and MATHL, respectively.) The EMU library specified indicates that floating-point
emulation should be used if a math coprocessor is not present at run-time. If you have a math coprocessor chip, you
may want to specify FP87 instead for increased performance (but the executable will not run on machines that do not
have a math coprocessor chip). The omitted parameter (indicated by ,,) is the name of the map file to be created. A
map file is created by default unless the /x option is used (as shown). in either case the name of the map file will be the
name part of the executable file with .map appended (unless a name for the map file is explicitly specified).

You may instead want to use the Borland C integrated Developers Environment (IDE) to compile/link your
applications. The options shown above for the command line compiler are specified in the development environment.
Consult the documentation for the IDE for the steps necessary to compile/link your application.

NOTE: The same memory model must have been used to compile your application's source files and the CDF library.
The CDF library for Borland C supplied with the CDF distribution is compiled using the large memory model. If you
need to use the huge memory model for your application, you will also have to rebuild the CDF library for the huge
memory model.

2.6 Macintosh Systems, CodeWarrior C/C++

CodeWarrior IDE project files used to compile and link the library and toolkit programs are not included in the CDF
distribution for Macintosh. Contact CDFsupport@nssdca.gsfc.nasa.gov for information about project settings.

2.7 Macintosh Systems, MPW

7

Macintosh Programmer's Workshop (MPW) uses a command line instruction to link an application. This command
may be entered either on the MPW Worksheet or in An MPW makefile. An example of the command to link an
application with the CDF library (libcdf.o) using MPW would be as follows:

Link -t APPL -c '????' -model far δ
 <object-file>.c.o <object-file>.c.o ... <object-file>.c.o δ
 <lib-path>libcdf.o δ
 "{CLibraries}"<c-lib> "{CLibraries}"<c-lib> ... "{CLibraries}"<c-lib> δ
 "{Libraries}"<mac-lib> "{Libraries}"<mac-lib> ... "{Libraries}"<mac-lib> δ
 -o <appl-path>

where<object-file>.c.o is the name of one or more object modules being linked; <lib-path> is an absolute or relative
file name of the folder containing libcdf.o; <c-lib> is the name of one or more needed C libraries; <mac-lib> is the
name of one or more needed Macintosh libraries; and <appl-path> is the file name of the application being linked. You
will need to know whereon your system libcdf.o has been installed. File names on a Macintosh are constructed by
separating volume/folder names with colons and terminating the file name with a colon if it is a folder rather than a file
(e.g., Disk1:cdf26-dist:lib:). Note that this example assumes that <object-file>.c.o is in the current directory.

The C libraries that may be needed for the link are StdCLib.o, Math.o, and CSANELib.o. The Macintosh libraries that
may be needed are Runtime.o and Interface.o. Note that "{CLibraries}" and "{Libraries}" are predefined by MPW.

The -model far option indicates that the 32K restrictions on the size of code segments, the jump table, and the global
data area are to be removed. This option is necessary in order to successfully link to the CDF library provided for
MPW applications.

The CDF library does not use Macintosh resources. If your application uses resources, they must be compiled/linked as
described in the MPW documentation.

8

Chapter 3

Linking Shared CDF Library

A shareable version of the CDF library is also available on VMS systems, some flavors of UNIX1, Windows NT/95/982
and Macintosh.3 The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
VAX (VMS & OpenVMS) LIBCDF.EXE
DEC Alpha (OpenVMS) LIBCDF.EXE
Sun (SunOS) libcdf.so
Sun (SOLARIS) libcdf.so
HP 9000 (HP-UX) libcdf.sl
IBM RS6000 (AIX) libcdf.o
DEC Alpha (OSF/1) libcdf.so
SGi (IRIX 5.x & 6.x) libcdf.so
Linux (PC & Power PC) libcdf.so
Windows NT/95/98 dllcdf.dll
Macintosh (MacOS) dllcdf.(ppc) & dllcdf.(68k)

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

3.1 VAX (VMS & OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 CDF$LIBCDFEXE/SHAREABLE
 SYS$SHARE:VAXCRTL/SHAREABLE

 <Control-Z>
 $ DEASSIGN CDF$LIBCDFEXE

1 On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD_LIBRARY_PATH must be set to include the directory containing libcdf.so or libcdf.sl.
2 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dllcdf.dll.
3 On Mac systems, when executing a program linked to the shared CDF library, dllcdf.ppc or dllcdf.68k must be copied
into System's Extension folder.

9

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

NOTE: on VAX/VMS and VAX/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE.
If that is the case, the link command would be as follows:

$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 SYS$SHARE:LIBCDF/SHAREABLE
 SYS$SHARE:VAXCRTL/SHAREABLE
 <Control-Z>

3.2 DEC Alpha (OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 CDF$LIBCDFEXE/SHAREABLE
 SYS$LIBRARY:<crtl>/LIBRARY
 <Control-Z>
$ DEASSIGN CDF$LIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

NOTE: on DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 SYS$SHARE:LIBCDF/SHAREABLE
 SYS$LIBRARY:<crtl>/LIBRARY
 <Control-Z>

3.3 Sun (SunOS)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -ldl

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}. Also, -ldl may not be necessary on some SunOS systems.

3.4 SUN (SOLARIS)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lc -lm

10

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.5 HP 9000 (HP-UX)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.sl -lc -lm

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 IBM RS6000 (AIX)

% cc -o <exe-file> <object-file(s)>.o -L${CDF_LIB} ${CDF_LIB}/libcdf.o -lc -lm

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.7 DEC Alpha (OSF/1)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 SGi (IRIX 5.x & 6.x)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.9 Linux (PC & Power PC)

11

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.10 Windows (NT/95/98)

% link /out:<exe-file>.exe <object-file(s)>.obj <lib-path>dllcdf.lib
 /nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has
dllcdf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.11 Macintosh (MacOS)

Two vesions of dynamic link libraries are included in the distribution. One, dllcdf.PPC, is for the Power PC and the
other, dllcdf.68K, is for the 68K box. Copy the proper one to your System's Extension folder.

12

Chapter 4

Programming Interface

The following sections describe various aspects of the C programming interface for CDF applications. These include
constants and types defined for use by all CDF application programs written in C. These constants and types are
defined in cdf.h. The file cdf.h should be #include'd in all application source files referencing CDF
routines/parameters.

4.1 Item Referencing

For C applications all items are referenced starting at zero (0). These include variable, attribute, and attribute entry
numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are numbered
starting at zero (0).

4.2 Defined Types

The following typedef's are provided. They should be used when declaring or defining the corresponding items.

CDFstatus All CDF functions except CDFvarNum and CDFattrNum are of type CDFstatus.
They return a status code indicating the completion status of the function. The
CDFerror function can be used to inquire the meaning of any status code.
Appendix A lists the possible status codes along with their explanations. Chapter 7
describes how to interpret status codes.

CDFid An identifier (or handle) for a CDF that must be used when referring to a CDF. A

new CDFid is established whenever a CDF is created or opened, establishing a
connection to that CDF on disk. The CDFid is used in all subsequent operations on
a particular CDF. The CDFid must not be altered by an application.

4.3 CDFstatus Constants

13

These constants are of type CDFstatus.

CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 7 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one

additional file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE 1-byte, signed integer.

CDF_CHAR 1-byte, signed character.

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1-byte, unsigned character.

CDF_UINT1 1-byte, unsigned integer.

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF_REAL4 4-byte, floating point.

CDF_FLOAT 4-byte, floating point.

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point.

CDF_EPOCH 8-byte, floating point.

14

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point

values are encoded in Digital's D_FLOAT representation.

ALPHAVMSd_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
 Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).

HP_ENCODING Indicates HP data representation (HP 9000 series).

PC_ENCODING Indicates PC data representation.

NeXT_ENCODING Indicates NeXT data representation.

15

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point

values will be in Digital's D_FLOAT representation.

ALPHAVMSd_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's D_FLOAT
representation.

ALPHAVMSg_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

16

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

4.8. Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in

each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)

17

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.

HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.1 There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provides the
most compression but requires the most execution time. Values in-
between provide varying compromises of these two extremes.

4.11 Sparseness

4.11.1 Sparse Records

The following types of sparse records for variables are supported.

NO_SPARSERECORDS No sparse records.

1 Disabled for PC running 16-bit DOS/Windows 3.x.

18

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from

a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.2

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

VARIABLE_SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zMODEoff Turns off zMode.

2 Obviously, sparse arrays are not yet supported.

19

zMODEon1 Turns on zMode/1.

zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes
Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT_,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfp0on Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

4.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.

CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the NUL3 terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on VMS systems and environment variables on UNIX systems).

CDF_VAR_NAME_LEN Maximum length of a variable name (excluding the NUL terminator).

CDF_ATTR_NAME_LEN Maximum length of an attribute name (excluding the NUL terminator).

CDF_COPYRIGHT_LEN Maximum length of the CDF copyright text (excluding the NUL

terminator).

CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

3 The ASCII null character, 0x0.

20

Chapter 5

Standard Interface

The following sections describe the Standard Interface routines callable from C applications. Most functions return a
status code of type CDFstatus (see Chapter 7). The Internal Interface is described in Chapter 6. An application can use
both interfaces when necessary. Note that zVariables and vAttribute zEntries are only accessible via the Internal
Interface.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same
function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Standard Interface functions are implemented as macros (which call the Internal Interface).

5.1 CDFcreate

CDFstatus CDFcreate(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
long numDims, /* in -- Number of dimensions, rVariables. */
long dimSizes[], /* in -- Dimension sizes, rVariables. */
long encoding, /* in -- Data encoding. */
long majority, /* in -- Variable majority. */
CDFid *id); /* out -- CDF identifier. */

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on VMS systems and environment
variables on UNIX systems).

UNIX: File names are case-sensitive.

21

numDims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero

(0) and at most CDF_MAX_DIMS.

dimSizes The size of each dimension. Each element of dimSizes specifies the corresponding

dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings

described in Section 4.6.

majority The majority for variable data. Specify one of the majorities described in Section 4.8.

id The identifier for the created CDF. This identifier must be used in all subsequent operations

on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 5.5).

5.1.1 Example(s)

The following example will create a CDF named test1 with network encoding and row majority.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long numDims = 3; /* Number of dimensions, rVariables. */
static long dimSizes[3] = {180,360,10}; /* Dimension sizes, rVariables. */
static long majority = ROW_MAJOR; /* Variable majority. */
.
.
status = CDFcreate ("test1", numDims, dimSizes, NETWORK_ENCODING, majority, &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

ROW_MAJOR and NETWORK_ENCODING are defined in cdf.h.

5.2 CDFopen

CDFstatus CDFopen(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out -- CDF identifier. */

22

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on VMS systems and environment
variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations

on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 5.5).

5.2.1 Example(s)

The following example will open a CDF named NOAA1.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char CDFname[] = { "NOAA1" }; /* file name of CDF. */
.
.
status = CDFopen (CDFname, &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.3 CDFdoc
CDFstatus CDFdoc(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *version, /* out -- Version number. */
long *release, /* out -- Release number. */
char copyRight[CDF_DOCUMENT_LEN+1]); /* out -- Copyright. */

CDFdoc is used to inquire general documentation about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V2.4 is version 2, release 4) along with the CDF copyright notice.

23

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copyRight The copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF_COPYRIGHT_LEN + 1 characters (including the NUL
terminator). This string will contain a newline character after each line of the copyright
notice.

The copyright notice is formatted for printing without modification. The version and release are used together (e.g.,
CDF V2.4 is version 2, release 4).

5.3.1 Example(s)

The following example will inquire and display the version/release and copyright notice.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long version; /* CDF version number. */
long release; /* CDF release number. */
char copyRight[CDF_COPYRIGHT_LEN+1]; /* Copyright notice -- +1 for NUL terminator. */
.
.
status = CDFdoc (id, &version, &release, copyRight);
if (status < CDF_OK) /* INFO status codes ignored */
 UserStatusHandler (status);
else {
 printf ("CDF V%d.%d\n", version, release);
 printf("%s\n", copyRight);
}
.
.

5.4 CDFinquire

CDFstatus CDFinquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
long *numDims, /* out -- Number of dimensions, rVariables. */
long dimSizes[CDF_MAX_DIMS], /* out -- Dimension sizes, rVariables. */
long *encoding, /* out -- Data encoding. */
long *majority, /* out -- Variable majority. */

24

long *maxRec, /* out -- Maximum record number in the CDF, rVariables. */
long *numVars, /* out -- Number of rVariables in the CDF. */
long *numAttrs); /* out -- Number of attributes in the CDF. */

CDFinquire inquires the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data. Knowing the variable majority can be used to optimize
performance and is necessary to properly use the variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.

dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array

containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in

Section 4.6.

majority The majority of the variable data. The majorities are defined in Section 4.8.

maxRec The maximum record number written to an rVariable in the CDF. Note that the maximum

record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
CDFlib (Internal Interface) may be used to inquire the maximum record written for an
individual rVariable (see Section 6).

numVars The number of rVariables in the CDF.

numAttrs The number of attributes in the CDF.

5.4.1 Example(s)

The following example will inquire the basic information about a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions, rVariables. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes, rVariables (allocate to allow the

 maximum number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number, rVariables. */
long numVars; /* Number of rVariables in CDF. */
long numAttrs; /* Number of attributes in CDF. */
.

25

.
status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority, &maxRec, &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.5 CDFclose

CDFstatus CDFclose(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFclose closes the specified CDF. The CDF's cache buffers are ushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

5.5.1 Example(s)

The following example will close an open CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFclose (id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.6 CDFdelete

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

26

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

5.6.1 Example(s)

The following example will open and then delete an existing CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFopen ("test2", &id);
if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
else {
 status = CDFdelete (id);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

5.7 CDFerror

CDFstatus CDFerror(/* out -- Completion status code. */
CDFstatus status, /* in -- Status code. */
char message[CDF_STATUSTEXT_LEN+1]); /* out -- Explanation text for the status code. */

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 7 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:

status The status code to check.

message The explanation of the status code. This character string must be large enough to

hold CDF_STATUSTEXT_LEN + 1 characters (including the NUL terminator).

27

5.7.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char text[CDF_STATUSTEXT_LEN+1]; /* Explanation text.+1 added for NUL terminator. */
.
.
status = CDFopen ("giss_wetl", &id);
if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
 CDFerror (status, text);
 printf ("ERROR> %s\n", text);
}
.
.

5.8 CDFattrCreate

CDFstatus CDFattrCreate(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *attrName, /* in -- attribute name. */
long attrScope, /* in -- Scope of attribute. */
long *attrNum); /* out -- attribute number. */

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN

characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFattrNum function.

5.8.1 Example(s)

28

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char UNITSattrName[] = {"Units"}; /* Name of "Units" attribute. */
long UNITSattrNum; /* "Units" attribute number. */
long TITLEattrNum; /* "TITLE" attribute number. */
static long TITLEattrScope = GLOBAL_SCOPE; /* "TITLE" attribute scope. */
.
.
status = CDFattrCreate (id, "TITLE", TITLEattrScope, &TITLEattrNum);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFattrCreate (id, UNITSattrName, VARIABLE_SCOPE, &UNITSattrnum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.9 CDFattrNum

long CDFattrNum(/* out -- attribute number. */
CDFid id, /* in -- CDF id */
char *attrName); /* in -- attribute name */

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrName The name of the attribute for which to search. This may be at most

CDF_ATTR_NAME_LEN characters (excluding the NUL terminator). Attribute names are
case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

5.9.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code. CDFattrRename is described in Section 5.10.

29

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFattrRename (id, CDFattrNum(id,"pressure"), "PRESSURE");
if (status != CDF_OK) UserStatusHandler (status);

5.10 CDFattrRename

CDFstatus CDFattrRename(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- attribute number. */
char *attrName); /* in -- New attribute name. */

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 5.9).

attrName The new attribute name. This may be at most CDF_ATTR_NAME_LEN characters

(excluding the NUL terminator). Attribute names are case-sensitive.

5.10.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFattrRename (id, CDFattrNum(id,"LAT"), "LATITUDE");
if (status != CDF_OK) UserStatusHandler (status);
.
.

30

5.11 CDFattrInquire

CDFstatus CDFattrInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- attribute number. */
char *attrName, /* out -- attribute name. */
long *attrScope, /* out -- attribute scope. */
long *maxEntry); /* out -- Maximum gEntry or rEntry number. */

CDFattrInquire is used to inquire about the specified attribute. to inquire about a specific attribute entry, use
CDFattrEntryInquire (Section 5.12).

The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The number of the attribute to inquire. This number may be determined with a call to

CDFattrNum (see Section 5.9).

attrName The attribute's name. This character string must be large enough to hold

CDF_ATTR_NAME_LEN + 1 characters (including the NUL terminator).

attrScope The scope of the attribute. Attribute scopes are defined in Section 4.12.

maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. in either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 6). If no entries exist for the attribute, then
a value of -1 will be passed back.

5.11.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the maximum

 number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numVars; /* Number of variables in CDF. */

31

long numAttrs; /* Number of attributes in CDF. */
long attrN; /* attribute number. */
char attrName[CDF_ATTR_NAME_LEN+1]; /* attribute name -- +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxEntry; /* Maximum entry number. */
.
.
status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority, &maxRec, &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
for (attrN = 0; attrN < numAttrs; attrN++) {
 status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
 if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
 else
 printf ("%s\n", attrName);
}
.
.

5.12 CDFattrEntryInquire

CDFstatus CDFattrEntryInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- attribute number. */
long entryNum, /* in -- Entry number. */
long *dataType, /* out -- Data type. */
long *numElements); /* out -- Number of elements (of the data type). */

CDFattrEntryInquire is used to inquire about a specific attribute entry. to inquire about the attribute in general, use
CDFattrInquire (see Section 5.11). CDFattrEntryInquire would normally be called before calling CDFattrGet in order
to determine the data type and number of elements (of that data type) for an entry. This would be necessary to
correctly allocate enough memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrNum The attribute number for which to inquire an entry. This number may be determined

with a call to CDFattrNum (see Section 5.9).

entryNum The entry number to inquire. If the attribute is global in scope, this is simply the gEntry

number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

dataType The data type of the specified entry. The data types are defined in Section 4.5.

NumElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

32

5.12.1 Example(s)

The following example inquires each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* attribute number. */
long entryN; /* Entry number. */
char attrName[CDF_ATTR_NAME_LEN+1]; /* attribute name, +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxEntry; /* Maximum entry number used. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of the data type). */
.
.
attrN = CDFattrNum (id, "TMP");
if (attrN < 0) UserStatusHandler (attrN); /* If less than zero (0), then it must be a

 warning/error code. */
status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {
 status = CDFattrEntryInquire (id, attrN, entryN, &dataType, &numElems);
 if (status < CDF_OK) {
 if (status != NO_SUCH_ENTRY) UserStatusHandler (status);
 }
 else {
 /* process entries */
 .
 .
 }
}

5.13 CDFattrPut

CDFstatus CDFattrPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- attribute number. */
long entryNum, /* in -- Entry number. */
long dataType, /* in -- Data type of this entry. */
long numElements, /* in -- Number of elements (of the data type). */
void *value); /* in -- Value. */

33

CDFattrPut is used to write an attribute entry to a CDF. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

The arguments to CDFattrPut are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum

(see Section 5.9).

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number

and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType The data type of the specified entry. Specify one of the data types defined in Section

4.5.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address

value.

numElements elements of the data type dataType will be written to the CDF starting from memory address value.

5.13.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

.

.
#include "cdf.h"
.
.
#define TITLE_LEN 10 /* Length of CDF title. */
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* Entry number. */
long numElements; /* Number of elements (of data type). */
static char title[TITLE_LEN+1] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */

static short TMPvalids = {15,30}; /* Value(s) of VALIDs attribute,

 rEntry for rVariable TMP. */
.
.
entryNum = 0;
status = CDFattrPut (id, CDFattrNum(id,"TITLE"), entryNum, CDF_CHAR, TITLE_LEN, title);
if (status != CDF_OK) UserStatusHandler (status);

34

.
.
numElements = 2;
status = CDFattrPut (id, CDFattrNum(id,"VALIDs"), CDFvarNum(id,"TMP"),
 CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.14 CDFattrGet

CDFstatus CDFattrGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- attribute number. */
long entryNum, /* in -- Entry number. */
void *value); /* out -- Value. */

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum (see

Section 5.9).

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The function

CDFattrEntryInquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

5.14.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */

35

CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */
.
.
attrN = CDFattrNum (id, "UNITS");
if (attrN < 0) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error code. */
entryN = CDFvarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */

if (entryN < 0) UserStatusHandler (entryN); /* If less than zero (0), then it must be a warning/error code. */
status = CDFattrEntryInquire (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFattrGet (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */

 printf ("Units of PRES_LVL variable: %s\n", buffer);

 free (buffer);
}
.
.

5.15 CDFvarCreate

CDFstatus CDFvarCreate(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- rVariable name. */
long dataType, /* in -- Data type. */
long numElements, /* in -- Number of elements (of the data type). */
long recVariance, /* in -- Record variance. */
long dimVariances[], /* in -- Dimension variances. */
long *varNum); /* out -- rVariable number. */

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

36

varName The name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 4.5.

numElements The number of elements of the data type at each value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The rVariable's record variance. Specify one of the variances defined in Section 4.9.

dimVariances The rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

varNum The number assigned to the new rVariable. This number must be used in subsequent

CDF function calls when referring to this rVariable. An existing rVariables's number
may be determined with the CDFvarNum function.

5.15.1 Example(s)

The following example will create several rVariables in a CDF whose rVariables are 2-dimensional. In this case
EPOCH, LAT, and LON are independent rVariables, and TMP is a dependent rVariable.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */
static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys = {NOVARY,NOVARY}; /* EPOCH dimension variances. */
static long LATdimVarys = {NOVARY,VARY}; /* LAT dimension variances. */
static long LONdimVarys = {VARY,NOVARY}; /* LON dimension variances. */
static long TMPdimVarys = {VARY,VARY}; /* TMP dimension variances. */
long EPOCHvarNum; /* EPOCH variable number. */
long LATvarNum; /* LAT rVariable number. */
long LONvarNum; /* LON rVariable number. */
long TMPvarNum; /* TMP rVariable number. */
.
.
status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, EPOCHdimVarys, &EPOCHvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, &LATvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LONGITUDE", CDF_INT2, 1, LONrecVary, LONdimVarys, &LONvarNum);
if (status != CDF_OK) UserStatusHandler (status);

37

status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1, TMPrecVary, TMPdimVarys, &TMPvarNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.16 CDFvarNum

long CDFvarNum(/* out -- rVariable number. */
CDFid id, /* in -- CDF identifier. */
char *varName); /* in -- rVariable name. */

CDFvarNum is used to determine the number associated with a given rVariable name. If the rVariable is found,
CDFvarNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the rVariable
does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

VarName The name of the rVariable for which to search. This may be at most

CDF_VAR_NAME_LEN characters (excluding the NUL terminator). Variable names are
case-sensitive.

CDFvarNum may be used as an embedded function call when an rVariable number is needed.

5.16.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char varName[CDF_VAR_NAME_LEN+1]; /* rVariable name. */
long dataType; /* Data type of the rVariable. */
long numElements; /* Number of elements (of the data type). */
long recVariance; /* Record variance. */
long dimVariances[CDF_MAX_DIMS]; /* Dimension variances. */
.
.
status = CDFvarInquire (id, CDFvarNum(id,"LATITUDE"), varName, &dataType,
 &numElements, &recVariance, dimVariances);
if (status != CDF_OK) UserStatusHandler (status);
.
.

38

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFvarNum would have returned an error code. Passing that error code to CDFvarInquire as an rVariable
number would have resulted in CDFvarInquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would
be used to determine them. CDFvarInquire is described in Section 5.18.

5.17 CDFvarRename

CDFstatus CDFvarRename(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
char *varName); /* in -- New name. */

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFvarRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

varNum The number of the rVariable to rename. This number may be determined with a call to

CDFvarNum (see Section 5.16).

varName The new rVariable name. This may be at most CDF_VAR_NAME_LEN characters

(excluding the NUL terminator). Variable names are case-sensitive.

5.17.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error
code.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* rVariable number. */
.
.
varNum = CDFvarNum (id, "TEMPERATURE");
if (varNum < 0) {
 if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);
}
else {
 status = CDFvarRename (id, varNum, "TMP");
 if (status != CDF_OK) UserStatusHandler (status);
}

39

.
.

5.18 CDFvarInquire

CDFstatus CDFvarInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
char varName, /* out -- rVariable name. */
long *dataType, /* out -- Data type. */
long *numElements, /* out -- Number of elements (of the data type). */
long *recVariance, /* out -- Record variance. */
long dimVariances[CDF_MAX_DIMS]); /* out -- Dimension variances. */

CDFvarInquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that
data type).

The arguments to CDFvarInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The number of the rVariable to inquire. This number may be determined with a call to

CDFvarNum (see Section 5.16).

varName The rVariable's name. This character string must be large enough to hold

CDF_VAR_NAME_LEN + 1 characters (including the NUL terminator).

dataType The data type of the rVariable. The data types are defined in Section 4.5.

numElements The number of elements of the data type at each rVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The record variance. The record variances are defined in Section 4.9.

dimVariances The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 4.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

5.18.1 Example(s)

The following example inquires about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name
returned by CDFvarInquire will be the same as that passed in to CDFvarNum.

.

.
#include "cdf.h"
.

40

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char varName[CDF_VAR_NAME_LEN+1]; /* rVariable name, +1 for NUL terminator. */
long dataType; /* Data type of the rVariable. */
long numElems; /* Number of elements (of data type). */
long recVary; /* Record variance. */
long dimVarys[CDF_MAX_DIMS]; /* Dimension variances (allocate to allow the

 maximum number of dimensions). */
.
.
status = CDFvarInquire (id, CDFvarNum(id,"HEAT_FLUX"), varName, &dataType,
 &numElems, &recVary, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.19 CDFvarPut

CDFstatus CDFvarPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in -- Value. */

CDFvarPut is used to write a single value to an rVariable. CDFvarHyperPut may be used to write more than one
rVariable value with a single call (see Section 5.21).

The arguments to CDFvarPut are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

varNum The number of the rVariable to which to write. This number may be determined with a call

to CDFvarNum (see Section 5.16).

recNum The record number at which to write.

indices The array indices within the specified record at which to write. Each element of indices

specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

value The value to write. The value is written to the CDF from memory address value.

5.19.1 Example(s)

The following example writes values to the rVariable named LATITUDE in a CDF whose rVariables are 2-
dimensional with dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension
variances are [NOVARY,VARY], and the data type is CDF_INT2.

.

41

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */
long varN; /* rVariable number. */
static long recNum = 0; /* Record number. */
static long indices[2] = {0,0}; /* Dimension indices. */

.
.
varN = CDFvarNum (id, "LATITUDE");
if (varN < 0) UserStatusHandler (varN); /* If less than zero (0), not a rVariable number but

 rather a warning/error code. */
for (lat = -90; lat <= 90; lat ++) {
 indices[1] = 90 + lat;
 status = CDFvarPut (id, varN, recNum, indices, &lat);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

Since the record variance is NOVARY, the record number (recNum) is set to zero (0). Also note that because the
dimension variances are [NOVARY,VARY], only the second dimension is varied as values are written. (The values
are “virtually” the same at each index of the first dimension.)

5.20 CDFvarGet

CDFstatus CDFvarGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* out -- Value. */

CDFvarGet is used to read a single value from an rVariable. CDFvarHyperGet may be used to read more than one
rVariable value with a single call (see Section 5.22).

The arguments to CDFvarGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

varNum The number of the rVariable from which to read. This number may be determined with a

call to CDFvarNum (see Section 5.16).

recNum The record number at which to read.

42

indices The array indices within the specified record at which to read. Each element of indices

specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

value The value read. This buffer must be large enough to hold the value. CDFvarInquire would

be used to determine the rVariable's data type and number of elements (of that data type) at
each value. The value is read from the CDF and placed at memory address value.

5.20.1 Example(s)

The following example will read and hold an entire record of data from an rVariable. The CDF's rVariables are 3-
dimensional with sizes [180,91,10]. For this rVariable the record variance is VARY, the dimension variances are
[VARY,VARY,VARY], and the data type is CDF_REAL4.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
float tmp[180][91][10]; /* Temperature values. */
long indices[3]; /* Dimension indices. */
long varN; /* rVariable number. */
long recNum; /* Record number. */
long d0, d1, d2; /* Dimension index values. */

.
.
varN = CDFvarNum (id, "Temperature");
if (varN < 0) UserStatusHandler (varN); /* If less than zero (0), then it is actually a warning/error

 code. */
recNum = 13;
for (d0 = 0; d0 < 180; d0++) {
 indices[0] = d0;
 for (d1 = 0; d1 < 91; d1++) {
 indices[1] = d1;
 for (d2 = 0; d2 < 10; d2++) {
 indices[2] = d2;
 status = CDFvarGet (id, varN, recNum, indices, &tmp[d0][d1][d2]);
 if (status != CDF_OK) UserStatusHandler (status);
 }
 }
}
.
.

5.21 CDFvarHyperPut

CDFstatus CDFvarHyperPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

43

long varNum, /* in -- rVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Interval between values along each dimension. */
void *buffer); /* in -- Buffer of values. */

CDFvarHyperPut is used to write a buffer of one or more values to an rVariable. It is important to know the variable
majority of the CDF before using CDFvarHyperPut because the values in the buffer to be written must be in the same
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDFvarHyperPut are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

varNum The number of the rVariable to which to write. This number may be determined with a call to

CDFvarNum (see Section 5.16).

recStart The record number at which to start writing.

recCount The number of records to write.

recInterval The interval between records for subsampling1 (e.g., An interval of 2 means write to every

other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies

the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

counts The number of values along each dimension to write. Each element of count specifies the

corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

intervals For each dimension the interval between values for subsampling2 (e.g., an interval of 2 means

write to every other value). intervals is a 1-dimensional array containing one element per
rVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For 0-dimensional rVariables this argument is ignored (but a place holder is
necessary).

buffer The buffer of values to write. The majority of the values in this buffer must be the same as

that of the CDF. The values starting at memory address buffer are written to the CDF.

5.21.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF whose rVariables are 2-dimensional with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the example in Section 5.19
except that it uses a single call to CDFvarHyperPut rather than numerous calls to CDFvarPut.

1 ”Subsampling" is not the best term to use when writing data, but you should know what we mean.
2 Again, not the best term.

44

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */
short lats[181]; /* Buffer of latitude values. */
long varN; /* rVariable number. */
long recStart = 0; /* Record number. */
long recCount = 1; /* Record counts. */
long recInterval = 1; /* Record interval. */
static long indices[2] = {0,0}; /* Dimension indices. */
static long counts[2] = {1,181}; /* Dimension counts. */
static long intervals[2] = {1,1}; /* Dimension intervals. */

.
.
varN = CDFvarNum (id, "LATITUDE");
if (varN < 0) UserStatusHandler (varN); /* If less than zero (0), not an rVariable number but rather a

 warning/error code. */
for (lat = -90; lat <= 90; lat ++)
 lats[90+lat] = lat;

status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.22 CDFvarHyperGet

CDFstatus CDFvarHyperGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Subsampling interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Subsampling intervals along each dimension. */
void *buffer); /* out -- Buffer of values. */

CDFvarHyperGet is used to read a buffer of one or more values from an rVariable. It is important to know the variable
majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that majority.
CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in the
CDF User's Guide describes the variable majorities.

The arguments to CDFvarHyperGet are defined as follows:

45

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or

CDFopen.

varNum The number of the rVariable from which to read. This number may be determined with a call to

CDFvarNum (see Section 5.16).

recStart The record number at which to start reading.

recCount The number of records to read.

recInterval The interval between records for subsampling (e.g., an interval of 2 means read every other

record).

indices The indices (within each record) at which to start reading. Each element of indices specifies the

corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

counts The number of values along each dimension to read. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

intervals For each dimension, the interval between values for subsampling (e.g., an interval of 2 means

read every other value). Each element of intervals specifies the corresponding dimension
interval. If there are zero (0) dimensions, this argument is ignored (but must be present).

buffer The buffer of values read. The majority of the values in this buffer will be the same as that of the

CDF. This buffer must be large to hold the values. CDFvarInquire would be used to determine
the rVariable's data type and number of elements (of that data type) at each value. The values
are read from the CDF and placed into memory starting at address buffer.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example in Section 5.20 except that it uses a single call to CDFvarHyperGet rather than numerous calls to CDFvarGet.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
float tmp[180][91][10]; /* Temperature values. */
long varN; /* rVariable number. */
long recStart = 13; /* Record number. */
long recCount = 1; /* Record counts. */
long recInterval = 1; /* Record interval. */
static long indices[3] = {0,0,0}; /* Dimension indices. */
static long counts[3] = {180,91,10}; /* Dimension counts. */
static long intervals[3] = {1,1,1}; /* Dimension intervals. */
.
.
varN = CDFvarNum (id, "Temperature");

46

if (varN < 0) UserStatusHandler (varN); /* If less than zero (0), then it is actually

 a warning/error code. */
status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp);
if (status != CDF_OK) UserStatusHandler (status);
.
.

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

5.23 CDFvarClose

CDFstatus CDFvarClose(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum); /* in -- rVariable number. */

CDFvarClose is used to close an rVariable in a multi-file CDF. This function is not applicable to single-file CDFs.
The use of CDFvarClose is not required since the CDF library automatically closes the rVariable files when a multi-file
CDF is closed or when there are insufficient file pointers available (because of an open file quota) to keep all of the
rVariable files open. CDFvarClose would be used by an application since it knows best how its rVariables are going to
be accessed. Closing an rVariable would also free the cache buffers that are associated with the rVariable's file. This
could be important in those situations where memory is limited (e.g., the PC). The caching scheme used by the CDF
library is described in the Concepts chapter in the CDF User's Guide. Note that there is not a function that opens an
rVariable. The CDF library automatically opens an rVariable when it is accessed by an application (unless it is already
open).

The arguments to CDFvarClose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

varNum The number of the rVariable to close. This number may be determined with a call to

CDFvarNum (see Section 5.16).

5.23.1 Example(s)

The following example will close an rVariable in a multi-file CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFvarClose (id, CDFvarNum(id,"Flux"));
if (status != CDF_OK) UserStatusHandler (status);
.
.

47

5.24 CDFgetrVarsRecordData

CDFstatus CDFgetrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of rVariables. */
char *varNames[], /* in -- Names of rVariables. */
long varRecNum, /* in -- Number of record. */

void *buffer[]; /* out -- Buffer of pointers for holding data. */

CDFgetrVarsRecordData is used to read a whole record data at a specific record number for a group of rVariables in a
CDF. It expects that the data buffer for each rVariable is set up properly and big enough to hold the full physical
record3. Retrieved record data from the rVariable group is filled into its respective buffer.

The arguments to CDFgetrVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the rVariables in the group involved this read operation.

varNames The names of the rVariables involved for which to read a whole record data.

varRecNum The record number at which to read the whole record data for the group of rVariables.

buffer An array of buffer pointers that point to the data holding areas for the retrieved data for the
given rVariables. Each holding area should be big enough to allow full physical record data
to fill.

5.24.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are
2-dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude, Temperature and
NAME. The record to be read is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar
variable of type int is allocated for its data type CDF INT4. For Longitude, a 1-dimensional array of type float (size
[2]) is allocated for its dimension variances [VARY,NONVARY] and data type CDF REAL4. A similar allocation is done
for Latitude for its [NONVARY,VARY] dimension variances and CDF REAL4 data type. For Temperature, since its
[VARY,VARY] dimension variances and CDF REAL4 data type, a 2-dimensional array of type float is allocated. For
NAME, a 2-dimensional array of type char (size [2,10]) is allocated for its [VARY,NONVARY] dimension variances and
CDF CHAR data type with the number of element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */

3 Physical record is explained in the Primer chapter in the CDF User's Guide.

48

 long numVars = 5; /* Number of rVariables to read. */
 long varRecNum = 4; /* The record number to read data. */
 char *rVar1 = "Time", /* Names of the rVariables to read. */
 *rVar2 = "Longitude",
 *rVar3 = "Latitude",
 *rVar4 = "Temperature",
 *rVar5 = "NAME";
 void *buffptr[5]; /* Array of buffer pointers. */
 int time; /* rVariable: Time; Datatype: INT4. */
 /* Dim/Rec Variances: T/FF. */
 float longitude[2]; /* rVariable: Longitude; Datatype: REAL4. */
 /* Dim/Rec Variances: T/TF. */
 float latitute[2]; /* rVariable: Latitude; Datatype: REAL4. */
 /* Dim/Rec Variances: T/FT. */
 float temperature[2][2]; /* rVariable: Temperature; Datatype: REAL4. */
 /* Dim/Rec Variances: T/TT. */
 char name[2][10]; /* rVariable: Name; Datatype: CHAR/10. */
 /* Dim/Rec Variances: T/TF. */

 varNames[0] = rVar1; /* Name of each rVariable. */
 varNames[1] = rVar2;
 varNames[2] = rVar3;
 varNames[3] = rVar4;
 varNames[4] = rVar5;

 buffptr[0] = (void *) &time; /* Address of each rVariable buffer. */
 buffptr[1] = (void *) &longitude;
 buffptr[2] = (void *) &latitude;
 buffptr[3] = (void *) &temperature;
 buffptr[4] = (void *) &name;

 status = CDFgetrVarsRecordData(id, numVars, varNames, varRecNum, buffptr);

 if (status != CDF_OK) UserStatusHandler (status);

Note that no data is returned from the non-variant dimensional elements. This function can be a replacement for
the similar functionality provided from the Internal Interface as <GET_, rVARs_RECDATA_>.

5.25 CDFputrVarsRecordData

CDFstatus CDFgetrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of rVariables. */
char *varNames[], /* in -- Names of rVariables. */
long varRecNum, /* in -- Number of record. */
void *buffer[]; /* in -- Buffer of pointers for input data. */

CDFputrVarsRecordData is used to write a whole record data at a specific record number for a group of rVariables in a CDF. It expects
that the data buffer for each rVariable matches up to the full physical record size. Passed record data is filled into its respective
rVariable .

The arguments to CDFgetrVarsRecordData are defined as follows:

49

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,

CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the rVariables in the group involved this read operation.

varNames The names of the rVariables involved for which to read a whole record data.

varRecNum The record number at which to read the whole record data for the group of rVariables.

buffer An array of buffer pointers that point to the data holding areas for the input data for the
given rVariables. Each buffer should hold a full physical record data.

5.25.1 Example(s)

The following example will write an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature.
The record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable
of type int is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar 1-dimensional
array is provided for Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of
type float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

 .
 #include "cdf.h"
 .
 .
 /* Dim/Rec Variances: T/TF. */
 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 5; /* Number of rVariables to write. */
 long varRecNum = 4; /* The record number to write data. */
 char *rVar1 = "Time", /* Names of the rVariables to write. */
 *rVar2 = "Longitude",
 *rVar3 = "Latitude",
 *rVar4 = "Temperature",
 *rVar5 = "NAME";
 void *buffptr[5]; /* Array of buffer pointers. */
 int time = {123} /* rVariable: Time; Datatype: INT4. */
 /* Dim/Rec Variances: T/FF. */
 float longitude[2] = /* rVariable: Longitude; Datatype: REAL4. */
 {11.1, 22.2}; /* Dim/Rec Variances: T/TF. */
 float latitute[2] = /* rVariable: Latitude; Datatype: REAL4. */
 {-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */
 float temperature[2][2] = /* rVariable: Temperature; Datatype: REAL4. */
 {100.0, 200.0, /* Dim/Rec Variances: T/TT. */
 300.0, 400.0};
 char name[2][10] = /* rVariable: NAME; Datatype: CHAR/10. */
 /* Dim/Rec Variances: T/TF. */
 {'1', '3', '5', '7', '9', '2', '4', '6', '8', '0',
 'z', 'Z', 'y', 'Y', 'x', 'X', 'w', 'W', 'v', 'V'};

 varNames[0] = rVar1; /* Name of each rVariable. */
 varNames[1] = rVar2;

50

 varNames[2] = rVar3;
 varNames[3] = rVar4;
 varNames[4] = rVar5;

 buffptr[0] = (void *) &time; /* Address of each rVariable buffer. */
 buffptr[1] = (void *) &longitude;
 buffptr[2] = (void *) &latitude;
 buffptr[3] = (void *) &temperature;
 buffptr[4] = (void *) &name;

 status = CDFputrVarsRecordData(id, numVars, varNames, varRecNum, buffptr);

 if (status != CDF_OK) UserStatusHandler (status);

Note that each physical record represents data values in a record without those from the non-variant dimensional
elements. This function can be a replacement for the similar functionality provided from the Internal Interface as
<PUT_, rVARs_RECDATA_>.

5.26 CDFgetzVarsRecordData

CDFstatus CDFgetzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */
char *varNames[], /* in -- Names of zVariables. */
long varRecNum, /* in -- Number of record. */
void *buffer[]; /* out -- Buffer of pointers for holding data. */

CDFgetzVarsRecordData is used to read a whole record data at a specific record number for a group of zVariables in
a CDF. It expects that the data buffer for each zVariable is set up properly and big enough to hold the full physical
record. Retrieved record data from the zVariable group is filled into its respective buffer

The arguments to CDFgetzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.

varNames The names of the zVariables involved for which to read a whole record data.

varRecNum The record number at which to read the whole record data for the group of zVariables.

buffer An array of buffer pointers that point to the data holding areas for the retrieved data for the
given zVariables. Each holding area should be big enough to allow full physical record data
to fill.

5.26.1 Example(s)

The following example will read an entire single record data for a group of zVariables. The zVariables involved in

51

the read are Time, Longitude, Delta and Name. The record to be read is 5. For Longitude, a 1-dimensional
array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2. For
Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type
CDF_INT4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has
dimension variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char
(size [2,10]) is allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of
element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 4; /* Number of zVariables to read. */
 long varRecNum = 5; /* The record number to read data. */
 char *zVar1 = "Longitude", /* Names of the zVariables to read. */
 *zVar2 = "Delta",
 *zVar3 = "Time",
 *zVar4 = "Name";
 void *buffptr[4]; /* Array of buffer pointers. */
 unsigned int time[3][2]; /* zVariable: Time; Datatype: UINT4. */
 /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
 short longitude[3]; /* zVariable: Longitude; Datatype: INT2. */
 /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
 int delta[3][2]; /* zVariable: Delta; Datatype: INT4. */
 /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
 char name[2][10]; /* zVariable: Name; Datatype: CHAR/10. */
 /* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

 varNames[0] = zVar1; /* Name of each zVariable. */
 varNames[1] = zVar2;
 varNames[2] = zVar3;
 varNames[3] = zVar4;

 buffptr[0] = (void *) &longitude; /* Address of each zVariable buffer. */
 buffptr[1] = (void *) δ
 buffptr[2] = (void *) &time;
 buffptr[3] = (void *) &name;

 status = CDFgetzVarsRecordData(id, numVars, varNames, varRecNum, buffptr);

 if (status != CDF_OK) UserStatusHandler (status);

This function can be a replacement for the similar functionality provided from the Internal Interface as <GET_,
zVARs_RECDATA_>.

5.27 CDFputzVarsRecordData

CDFstatus CDFputzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */

52

char *varNames[], /* in -- Names of zVariables. */
long varRecNum, /* in -- Number of record. */
void *buffer[]; /* in -- Buffer of pointers for input data. */

CDFputzVarsRecordData is used to write a whole record data at a specific record number for a group of zVariables in
a CDF. It expects that the data buffer for each zVariable matches up to the full physical record size. Passed
record data is filled into its respective zVariable.

The arguments to CDFgetzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.

varNames The names of the zVariables involved for which to read a whole record data.

varRecNum The record number at which to read the whole record data for the group of zVariables.

buffer An array of buffer pointers that point to the data holding areas for the input data for the given
zVariables. Each buffer should hold a full physical record.

5.27.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in
the write are Time, Longitude, Delta and Name. The record to be written is 5. For Longitude, a 1-dimensional
array of type short (size [3]) is provided for its dimension variance [VARY] and data type CDF_INT2. For Delta, a
2-dimensional array of type int (size [3,2]) is provided as its dimension variances are [VARY,VARY] with data type
CDF_INT4. For Time, it is 2-dimensional of type unsigned int (sizes [3,2]) for its dimension variances
[VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is provided
due to its [VARY] dimension variances and CDF_CHAR data type with the number ofelement 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 4; /* Number of zVariables to write. */
 long varRecNum = 5; /* The record number to write data. */
 char *zVar1 = "Longitude", /* Names of the zVariables to write. */
 *zVar2 = "Delta",
 *zVar3 = "Time",
 *zVar4 = "Name";
 void *buffptr[4]; /* Array of buffer pointers. */
 short longitude[3] = /* zVariable: Longitude; Datatype: INT2. */
 {50, 100, 125}; /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
 int delta[3][2] = /* zVariable: Delta; Datatype: INT4. */
 {-100, -200, /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
 -400, -800,
 -1000, -2000};
 unsigned int time[3][2] = /* zVariable: Time; Datatype: UINT4. */

53

 {123, 234, /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
 345, 456,
 567, 789};
 char name[2][10] = /* zVariable: Name; Datatype: CHAR/10. */
 /* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */
 {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};

 varNames[0] = zVar1; /* Name of each zVariable. */
 varNames[1] = zVar2;
 varNames[2] = zVar3;
 varNames[3] = zVar4;

 buffptr[0] = (void *) &longitude; /* Address of each zVariable buffer. */
 buffptr[1] = (void *) δ
 buffptr[2] = (void *) &time;
 buffptr[3] = (void *) &name;

 status = CDFputzVarsRecordData(id, numVars, varNames, varRecNum, buffptr);

 if (status != CDF_OK) UserStatusHandler (status);

This function can be a replacement for the similar functionality
provided from the Internal Interface as <PUT_, zVARs_RECDATA_>.

54

55

Chapter 6

Internal Interface – CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 6.6.
The function prototype for CDFlib is as follows:

CDFstatus CDFlib (long function, ...);

This function prototype is found in the include file cdf.h.

6.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
static char CDFname[] = {"test1"}; /* File name of the CDF. */
long numDims = 2; /* Number of dimensions. */
static long dimSizes[2] = {100,200}; /* Dimension sizes. */
long encoding = HOST_ENCODING; /* Data encoding. */
long majority = ROW_MAJOR; /* Variable data majority. */

56

long format = SINGLE_FILE; /* Format of CDF. */
.
.
status = CDFcreate (CDFname, numDims, dimSizes, encoding, majority, &id);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFlib (PUT__, CDF_FORMAT_, format, NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFlib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDFlib in this example are explained as follows:

PUT_ The first function to be performed. In this case an item is going to be put to the “current"
CDF (a new format). PUT_ is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.1 This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

CDF_FORMAT The item to be put. in this case it is the CDF's format.

format The actual format for the CDF. Depending on the item being put, one or more

arguments would have been necessary. In this case only one argument is necessary.

NULL_ This argument could have been one of two things. It could have been another item to put

(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_function.
NULL_indicates the end of the call to CDFlib. Specifying NULL_at the end of the
argument list is required because not all compilers/operating systems provide the ability
for a called function to determine how many arguments were passed in by the calling
function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations
would be the same.)

.

.
status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,
 PUT__, CDF_ENCODING_, encoding,
 CDF_MAJORITY_, majority,
 CDF_FORMAT_, format,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

The purpose of each argument is as follows:

CREATE_ The first function to be performed. In this case something will be created.

1 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

57

CDF_ The item to be created - a CDF in this case. There are four required arguments that

must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

CDFname The file name of the CDF.

numDims The number of dimensions in the CDF.

dimSizes The dimension sizes.

id The identifier to be used when referencing the created CDF in subsequent

operations.

PUT_ This argument could have been one of two things. Another item to create or a new

function to perform. In this case it is another function to perform - something will
be put to the CDF.

CDF_ENCODING_ The item to be put - in this case the CDF's encoding. Note that the CDF did not

have to be selected. It was implicitly selected as the current CDF when it was
created.

encoding The encoding to be put to the CDF.

CDF_MAJORITY_ This argument could have been one of two things. Another item to put or a new

function to perform. In this case it is another item to put - the CDF's majority.

majority The majority to be put to the CDF.

CDF_FORMAT_ Once again this argument could have been either another item to put or a new

function to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL_ This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL_function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

6.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>2 operation.

2 This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.

58

There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly
selected.3

rVariable (object)

An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,rVAR_> or <SELECT_,rVAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)

A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,zVAR_> or <SELECT_,zVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)

An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,ATTR_> or <SELECT_,ATTR_NAME_>
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)

A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT_,gENTRY_> operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)

A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT_,rENTRY_> operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)

A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT_,zENTRY_> operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)

An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,rVARs_RECNUMBER_> operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

3 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

59

record count, rVariables (state)

An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECCOUNT_> operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

record interval, rVariables (state)

An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECINTERVAL_>
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)

An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES_> operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)

An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)

An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT_,rVARs_DIMINTERVALS_> operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)

An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT_,zVAR_RECNUMBER_> operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)

60

A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECCOUNT_> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT_,zVAR_DIMINDICES_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT_,zVAR_DIMCOUNTS_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT_,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT_,CDF_STATUS_> operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.4

4 The CDF library now maintains the current status code from one call to the next of CDFlib.

61

6.3 Returned Status

CDFlib returns a status code of type CDFstatus. Since more than one operation may be performed with a single call to
CDFlib, the following rules apply:

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.

4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 7 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error
, warning, or informational.

6.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,
 PUT__, CDF_FORMAT_, format,
 CDF_MAJORITY_, majority,
 CREATE_, ATTR_, attrName, scope, &attrNum,
 rVAR_, varName, dataType, numElements,
 recVary, dimVarys, &varNum,
 NULL_);

Note that the functions (CREATE_, PUT_, and NULL_) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding
functions.

The following example shows the same call to CDFlib without the proper indentation.

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id, PUT__,
 CDF_FORMAT_, format, CDF_MAJORITY_, majority, CREATE_,
 ATTR_, attrName, scope, &attrNum, rVAR_, varName, dataType,
 numElements, recVary, dimVarys, &varNum, NULL_);

The need for proper indentation to ensure the readability of your applications should be obvious.

6.5 Syntax

CDFlib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

62

The syntax for CDFlib is as follows:

status = CDFlib (fnc1, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 fnc2, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 .
 .
 fncN, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 NULL_);

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required
argument for the operation. The NULL_function must be used to end the call to CDFlib. The completion status, status,
is returned.

6.6 Operations. . .

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.
CONFIRM_ Used to confirm the value of an item.
CREATE_ Used to create an item.
DELETE_ Used to delete an item.
GET_ Used to get (read) something from an item.
NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN_ Used to open an item.
PUT_ Used to put (write) something to an item.
SELECT_ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT_
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 6.2.

<CLOSE_,CDF_>

Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.

There are no required arguments.

The only required preselected object/state is the current CDF.

63

<CLOSE_,rVAR_>
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>

Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR_>

Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: long *attrNum

Attribute number.

The only required preselected object/state is the current CDF.

<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: char *attrName

The attribute name. This may be at most CDF_ATTR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>

Confirms the current CDF. Required arguments are as follows:

out: CDFid *id

The current CDF.

There are no required preselected objects/states.

<CONFIRM_,CDF_ACCESS_>

Confirms the accessability of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_CACHESIZE_>

Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

64

out: long *numBuffers

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>

Confirms the decoding for the current CDF. Required arguments are as follows:

out: long *decoding

The decoding. The decodings are described in Section 4.7.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>

Confirms the file name of the current CDF. Required arguments are as follows:

out: char CDFname[CDF_PATHNAME_LEN+1]

File name of the CDF.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>

Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: long *mode

The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>

Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: long *mode

The read-only mode. The read-only modes are described in Section 4.13.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_STATUS_>

Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT_,CDF_STATUS_> operation).

Required arguments are as follows:

out: CDFstatus *status

The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zMODE_>

65

Confirms the zMode for the current CDF. Required arguments are as follows:

out: long *mode

The zMode. The zModes are described in Section 4.14.

The only required preselected object/state is the current CDF.

<CONFIRM_,COMPRESS_CACHESIZE_>

Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CURgENTRY_EXISTENCE_>

Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,CURrENTRY_EXISTENCE_>

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).
If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,CURzENTRY_EXISTENCE_>

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>

Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The gEntry number.

66

The only required preselected object/state is the current CDF.

<CONFIRM_,gENTRY_EXISTENCE_>

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY_>

Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The rEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rENTRY_EXISTENCE_>

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>

Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: long *varNum

rVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_CACHESIZE_>

Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

67

<CONFIRM_,rVAR_EXISTENCE_>

Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_PADVALUE_>

Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_RESERVEPERCENT_>

Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: long *percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_SEQPOS_>

Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

out: long *recNum

Record number.

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVARs_DIMCOUNTS_>

Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long counts[CDF_MAX_DIMS]

Dimension counts. Each element of counts receives the corresponding dimension count.

68

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_DIMINDICES_>

Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_DIMINTERVALS_>

Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: long intervals[CDF_MAX_DIMS]

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECCOUNT_>

Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: long *recCount

Record count.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECINTERVAL_>

Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: long *recInterval

Record interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECNUMBER_>

Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: long *recNum

Record number.

The only required preselected object/state is the current CDF.

<CONFIRM_,STAGE_CACHESIZE_>

Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: long *numBuffers

69

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_>

Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The zEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR_>

Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: long *varNum

zVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_CACHESIZE_>

Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMCOUNTS_>

Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long counts[CDF_MAX_DIMS]

Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

70

<CONFIRM_,zVAR_DIMINDICES_>

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINTERVALS_>

Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long intervals[CDF_MAX_DIMS]

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_EXISTENCE_>

Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_PADVALUE_>

Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECCOUNT_>

Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECINTERVAL_>

Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *recInterval

71

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECNUMBER_>

Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RESERVEPERCENT_>

Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: long *percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

out: long *recNum

Record number.

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_,ATTR_>

A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: char *attrName

Name of the attribute to be created. This can be at most CDF_ATTR_NAME_LEN characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: long scope

Scope of the new attribute. Specify one of the scopes described in Section 4.12.

out: long *attrNum

72

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF_>

A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

in: long numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX_DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: long dimSizes[]

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: CDFid *id

CDF identifier to be used in subsequent operations on the CDF.

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT_,CDF_FORMAT_>, <PUT_,CDF_ENCODING_>, and
<PUT_,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE_,rVAR_>

A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: char *varName

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN characters
(excluding the NUL). Variable names are case-sensitive.

in: long dataType

73

Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

out: long *varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>

A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in: char *varName

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN characters
(excluding the NUL terminator). Variable names are case-sensitive.

in: long dataType

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.

in: long dimSizes[]

74

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).

out: long *varNum

Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes
which numerically follow the attribute being deleted are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF_>

Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.

There are no required arguments.

The only required preselected object/state is the current CDF.

<DELETE_,gENTRY_>

Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE_,rENTRY_>

Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

75

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR_>

Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables which numerically follow the rVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,rVAR_RECORDS_>

Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zENTRY_>

Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,zVAR_>

Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables which numerically follow the zVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zVAR_RECORDS_>

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the

76

records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,ATTR_MAXgENTRY_>

Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_MAXrENTRY_>

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_MAXzENTRY_>

Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NAME_>

Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

77

out: char attrName[CDF_ATTR_NAME_LEN+1]

Attribute name.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,ATTR_NUMBER_>

Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN characters (excluding the NUL
terminator).

out: long *attrNum

The attribute number.

The only required preselected object/state is the current CDF.

<GET_,ATTR_NUMgENTRIES_>

Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:

out: long *numEntries

The number of gEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_NUMrENTRIES_>

Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:

out: long *numEntries

The number of rEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NUMzENTRIES_>

Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:

out: long *numEntries

The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

78

<GET_,ATTR_SCOPE_>

Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: long *scope

Attribute scope. The scopes are described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_COMPRESSION_>

Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not
of any compressed variables. Required arguments are as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.

<GET_,CDF_COPYRIGHT_>

Reads the copyright notice for the CDF library that created the current CDF. Required arguments are as follows:

out: char copyRight[CDF_COPYRIGHT_LEN+1]

CDF copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>

Inquires the data encoding of the current CDF. Required arguments are as follows:

out: long *encoding

Data encoding. The encodings are described in Section 4.6.

The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT_>

Inquires the format of the current CDF. Required arguments are as follows:

out: long *format

CDF format. The formats are described in Section 4.4.

The only required preselected object/state is the current CDF.

79

<GET_,CDF_INCREMENT_>

Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:

out: long *increment

Incremental number.

The only required preselected object/state is the current CDF.

<GET_,CDF_INFO_>

Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: long *cType

The CDF compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cSize

If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: long *uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

<GET_,CDF_MAJORITY_>

Inquires the variable majority of the current CDF. Required arguments are as follows:

out: long *majority

Variable majority. The majorities are described in Section 4.8.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS_>

Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: long *numAttrs

80

Number of attributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>

Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs

Number of gAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMrVARS_>

Inquires the number of rVariables in the current CDF. Required arguments are as follows:

out: long *numVars

Number of rVariables.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMvATTRS_>

Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs

Number of vAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>

Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: long *numVars

Number of zVariables.

The only required preselected object/state is the current CDF.

<GET_,CDF_RELEASE_>

Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: long *release

Release number.

The only required preselected object/state is the current CDF.

<GET_,CDF_VERSION_>

Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:

out: long *version

81

Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE_>

Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: long dataType

Data type.

out: long *numBytes

Number of bytes per element.

There are no required preselected objects/states.

<GET_,gENTRY_DATA_>

Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY_DATATYPE_>

Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

82

<GET_,LIB_COPYRIGHT_>

Reads the copyright notice of the CDF library being used. Required arguments are as follows:

out: char copyRight[CDF_COPYRIGHT_LEN+1

CDF library copyright text.

There are no required preselected objects/states.

<GET_,LIB_INCREMENT_>

Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: long *increment

Incremental number.

There are no required preselected objects/states.

<GET_,LIB_RELEASE_>

Inquires the release number of the CDF library being used. Required arguments are as follows:

out: long *release

Release number.

There are no required preselected objects/states.

<GET_,LIB_subINCREMENT_>

Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: char *subincrement

Subincremental character.

There are no required preselected objects/states.

<GET_,LIB_VERSION_>

Inquires the version number of the CDF library being used. Required arguments are as follows:

out: long *version

Version number.

There are no required preselected objects/states.

<GET_,rENTRY_DATA_>

Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

83

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_DATATYPE_>

Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rVAR_ALLOCATEDFROM_>

Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: long *nextRecord

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_ALLOCATEDTO_>

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the last allocated record.

out: long *nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

84

<GET_,rVAR_BLOCKINGFACTOR_>5

Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:

out: long *blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_COMPRESSION_>

Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DATA_>

Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR_DATATYPE_>

Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DIMVARYS_>

Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

5 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

85

out: long dimVarys[CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_HYPERDATA_>

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<GET_,rVAR_MAXallocREC_>

Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:

out: long *varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_MAXREC_>

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: long *varMaxRec

Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NAME_>

Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF_VAR_NAME_LEN+1

Name of the rVariable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXENTRIES_>

86

Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXRECORDS_>

Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMallocRECS_>

Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: long *numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMBER_>

Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

out: long *varNum

The rVariable number.

87

The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) – multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS_>

Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,rVAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:

out: long *numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE_>

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT_,rVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY_>

Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *recVary

Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SEQDATA_>

Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: void *value

88

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.

<GET_,rVAR_SPARSEARRAYS_>

Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: long *sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.

out: long sArraysParms[CDF_MAX_PARMS]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SPARSERECORDS_>

Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:

out: long *sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVARs_DIMSIZES_>

Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long dimSizes[CDF_MAX_DIMS]

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The only required preselected object/state is the current CDF.

<GET_,rVARs_MAXREC_>

Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET_,rVAR_MAXREC_> operation. Required arguments are
as follows:

out: long *maxRec

Maximum record number.

89

The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>

Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: long *numDims

Number of dimensions.

The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA_>

Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

The number of rVariables from which to read. This must be at least one (1).

in: long varNums[]

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful if using C
struct objects to receive multiple full-physical rVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. 6

<GET_,STATUS_TEXT_>

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: char text[CDF_STATUSTEXT_LEN+1

Text explaining the status code.

The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA_>

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

6 A Standard Interface at Section 5.24 provides the same functionality.

90

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_DATATYPE_>

Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zVAR_ALLOCATEDFROM_>

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: long *nextRecord

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_ALLOCATEDTO_>

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the last allocated record.

91

out: long *nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_BLOCKINGFACTOR_>7

Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:

out: long *blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_COMPRESSION_>

Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA_>

Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zVAR_DATATYPE_>

Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *dataType

7 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

92

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMSIZES_>

Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimSizes[CDF_MAX_DIMS]

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMVARYS_>

Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_HYPERDATA_>

Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<GET_,zVAR_MAXallocREC_>

Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_MAXREC_>

Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: long *varMaxRec

93

Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NAME_>

Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF_VAR_NAME_LEN+1

Name of the zVariable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXENTRIES_>

Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXRECORDS_>

Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMallocRECS_>

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: long *numRecords

Number of allocated records.

94

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER_>

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

out: long *varNum

The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *numDims

Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) – multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMRECS_>

Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,zVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: long *numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_PADVALUE_>

Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT_,zVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

95

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_RECVARY_>

Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *recVary

Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SEQDATA_>

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.

<GET_,zVAR_SPARSEARRAYS_>

Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:

out: long *sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.

out: long sArraysParms[CDF_MAX_PARMS]

The sparse arrays parameters. The sparse arrays parameters are described in Sec-
tion 4.11.

out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SPARSERECORDS_>

Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

96

out: long *sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVARs_MAXREC_>

Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET_,zVAR_MAXREC_> operation. Required arguments are
as follows:

out: long *maxRec

Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,zVARs_RECDATA_>

Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

The number of zVariables from which to read. This must be at least one (1).

in: long varNums[]

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful if using C
struct objects to receive multiple full-physical zVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 8

<NULL_>

Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.

8 A Standard Interface at Section 5.26 provides the same functionality.

97

<OPEN ,CDF_>

Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:

in: char *CDFname

File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: CDFid *id

CDF identifier to be used in subsequent operations on the CDF.

There are no required preselected objects/states.

<PUT_,ATTR_NAME_>

Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: char *attrName

New attribute name. This may be at most CDF_ATTR_NAME_LEN characters (excluding the NUL
terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>

Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: long scope

New attribute scope. Specify one of the scopes described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,CDF_COMPRESSION_>

Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The only required preselected object/state is the current CDF.

<PUT_,CDF_ENCODING_>

Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:

98

in: long encoding

New data encoding. Specify one of the encodings described in Section 4.6.

The only required preselected object/state is the current CDF.

<PUT_,CDF_FORMAT_>

Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: long format

New CDF format. Specify one of the formats described in Section 4.4.

The only required preselected object/state is the current CDF.

<PUT_,CDF_MAJORITY_>

Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:

in: long majority

New variable majority. Specify one of the majorities described in Section 4.8.

The only required preselected object/state is the current CDF.

<PUT_,gENTRY_DATA_>

Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

99

in: long dataType

New data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,rENTRY_DATA_>

Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the rEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the rEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rVAR_ALLOCATEBLOCK_>

100

Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: long firstRecord

The first record number to allocate.

in: long lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS_>

Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:

in: long nRecords

Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>9

Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_COMPRESSION_>

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DATA_>

Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

9 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

101

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>

Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: long dataType

New data type. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DIMVARYS_>

Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA_>

Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: void *buffer

Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT_,rVAR_INITIALRECS_>

102

Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: long nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_NAME_>

Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_PADVALUE_>

Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: void *value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_RECVARY_>

Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: long recVary

New record variance. Specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SEQDATA_>

Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

103

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.

<PUT_,rVAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:

in: long sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.

in: long sArraysParms[]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SPARSERECORDS_>

Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:

in: long sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVARs_RECDATA_>

Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

The number of rVariables to which to write. This must be at least one (1).

in: long varNums[]

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful if using C
struct objects to store multiple full-physical rVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a sturct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. 10

10 A Standard Interface at Section 5.25 provides the same functionality.

104

<PUT_,zENTRY_DATA_>

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the zEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zVAR_ALLOCATEBLOCK_>

Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: long firstRecord

The first record number to allocate.

in: long lastRecord

The last record number to allocate.

105

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_ALLOCATERECS_>

Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:

in: long nRecords

Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR_>11

Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_COMPRESSION_>

Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DATA_>

Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zVAR_DATASPEC_>

Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are

11 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

106

considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: long dataType

New data type. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DIMVARYS_>

Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_INITIALRECS_>

Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: long nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_HYPERDATA_>

Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: void *buffer

Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

107

<PUT_,zVAR_NAME_>

Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_PADVALUE_>

Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: void *value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_RECVARY_>

Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: long recVary

New record variance. Specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SEQDATA_>

Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.

<PUT_,zVAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

in: long sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.

108

in: long sArraysParms[]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: long sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs_RECDATA_>

Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

The number of zVariables to which to write. This must be at least one (1).

in: long varNums[]

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful if using C
struct objects to store multiple full-physical zVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 12

<SELECT_,ATTR_>

Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: long attrNum

Attribute number.

12 A Standard Interface at Section 5.27 provides the same functionality.

109

The only required preselected object/state is the current CDF.

<SELECT_,ATTR_NAME_>

Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT_,ATTR_>) is more e_cient. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>

Explicitly selects the current CDF. Required arguments are as follows:

in: CDFid id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_>
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.

<SELECT_,CDF_CACHESIZE_>

Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING_>

Selects a decoding (for the current CDF). Required arguments are as follows:

in: long decoding

The decoding. Specify one of the decodings described in Section 4.7.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>

Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: long mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>

Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: long mode

110

The read-only mode. Specify one of the read-only modes described in Section 4.13.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_SCRATCHDIR_>

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the the CDF$TMP logical name (on VMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: char *scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_>

Selects the current status code. Required arguments are as follows:

in: CDFstatus status

CDF status code.

There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>

Selects a zMode (for the current CDF). Required arguments are as follows:

in: long mode

The zMode. Specify one of the zModes described in Section 4.14.

The only required preselected object/state is the current CDF.

<SELECT_,COMPRESS_CACHESIZE_>

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,gENTRY_>

Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

gEntry number.

The only required preselected object/state is the current CDF.

111

<SELECT_,rENTRY_>

Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

rEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_NAME_>

Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT_,rENTRY_>) is more e_cient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_>

Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum

rVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_CACHESIZE_>

Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_NAME_>

Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT_,rVAR_>) is more e_cient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_RESERVEPERCENT_>

Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

112

in: long percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_SEQPOS_>

Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

in: long recNum

Record number.

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVARs_CACHESIZE_>

Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMCOUNTS_>

Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: long counts[]

Dimension counts. Each element of counts specifies the corresponding dimension count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINDICES_>

Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINTERVALS_>

Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

113

in: long intervals[]

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>

Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: long recCount

Record count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>

Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: long recInterval

Record interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>

Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: long recNum

Record number.

The only required preselected object/state is the current CDF.

<SELECT_,STAGE CACHESIZE_>

Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_>

Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

zEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_NAME_>

114

Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT_,zENTRY_>) is more e_cient. Required arguments are
as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_>

Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum

zVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_CACHESIZE_>

Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMCOUNTS_>

Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: long counts[]

Dimension counts. Each element of counts specifies the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINDICES_>

Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINTERVALS_>
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

115

in: long intervals[]

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME_>

Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT_,zVAR_>) is more e_cient. Required arguments are as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_RECCOUNT_>

Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:

in: long recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECINTERVAL_>

Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

in: long recInterval

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECNUMBER_>

Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

in: long recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RESERVEPERCENT_>

Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: long percent

The reserve percentage.

116

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_SEQPOS_>

Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

in: long recNum

Record number.

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVARs_CACHESIZE_>

Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zVARs_RECNUMBER_>

Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

in: long recNum

Record number.

The only required preselected object/state is the current CDF.

6.7 More Examples
Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

6.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

.

117

.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long dimVarys[2]; /* Dimension variances. */
long varNum; /* rVariable number. */
Float padValue = -999.9; /* Pad value. */

.
.
dimVarys[0] = VARY;
dimVarys[1] = VARY;
status = CDFlib (CREATE_, rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY, dimVarys, &varNum,
 PUT__, rVAR_PADVALUE_, &padValue,
 rVAR_INITIALRECS_, (long) 500,
 rVAR_BLOCKINGFACTOR_, (long) 50,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long dimVarys[1]; /* Dimension variances. */
long varNum; /* zVariable number. */
long numDims = 1; /* Number of dimensions. */
static long dimSizes[1] = { 20 }; /* Dimension sizes. */
long numElems = 10; /* Number of elements (characters in this case). */
static char padValue = "**********"; /* Pad value. */
.
.
dimVarys[0] = VARY;
status = CDFlib (CREATE_, zVAR_, "Station", CDF_CHAR, numElems, numDims,
 dimSizes, NOVARY, dimVarys, &varNum,
 PUT__, zVAR_PADVALUE_, padValue,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.7.3 Hyper Read with Subsampling

118

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF_UINT2. It is assumed that the
current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
unsigned short values[50][100]; /* Buffer to receive values. */
long recCount = 1; /* Record count, one record per hyper get. */
long recInterval = 1; /* Record interval, set to one to indicate contiguous records

 (really meaningless since record count is one). */
static long indices[2] = {0,0}; /* Dimension indices, start each read at 0,0 of the array. */
static long counts[2] = {50,100}; /* Dimension counts, half of the values along

 each dimension will be read. */
static long intervals[2] = {2,2}; /* Dimension intervals, every other value along

 each dimension will be read. */
long recNum; /* Record number. */
long maxRec; /* Maximum rVariable record number in the CDF - this was

 determined with a call to CDFinquire. */
.
.
status = CDFlib (SELECT_, rVAR_NAME_, "BRIGHTNESS",
 rVARs_RECCOUNT_, recCount,
 rVARs_RECINTERVAL_, recInterval,
 rVARs_DIMINDICES_, indices,
 rVARs_DIMCOUNTS_, counts,
 rVARs_DIMINTERVALS_, intervals,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);

for (recNum = 0; recNum <= maxRec; recNum++) {
 status = CDFlib (SELECT_, rVARs_RECNUMBER_, recNum,
 GET_, rVAR_HYPERDATA_, values,
 NULL_);
 if (status != CDF_OK) UserStatusHandler (status);
 .
 .
 /* process values */
 .
 .
}
.
.

6.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

.
.
#include "cdf.h"

119

.
.
CDFstatus status; /* Status returned from CDF library. */
.
.
status = CDFlib (SELECT_, ATTR_NAME_, "Tmp",
 PUT__, ATTR_NAME, "TMP",
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current
CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */
long recNum = 0; /* Record number, start at first record. */
static long indices[2] = {0,0}; /* Dimension indices. */
float value; /* Value read. */
double sum = 0.0; /* Sum of all values. */
long count = 0; /* Number of values. */
float ave; /* Average value. */
.
.
status = CDFlib (GET_, zVAR_NUMBER_, "FLUX", &varNum,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFlib (SELECT_, zVAR_, varNum,
 zVAR_SEQPOS_, recNum, indices,
 GET_, zVAR_SEQDATA_, &value,
 NULL_);

while (status _>= CDF_OK) {
 sum += value;
 count++;
 status = CDFlib (GET_, zVAR_SEQDATA_, &value,
 NULL_);
}
if (status != END_OF_VAR) UserStatusHandler (status);

ave = sum / count;
.
.

120

6.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
static float scale[2] = {-90.0,90.0}; /* Scale, minimum/maximum. */
.
.
status = CDFlib (SELECT_, rENTRY_NAME_, "LATITUDE",
 ATTR_NAME_, "FIELDNAM",
 PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
 "Latitude “,
 SELECT_, ATTR_NAME_, "SCALE",
 PUT__, rENTRY_DATA_, CDF_REAL4, (long) 2, scale,
 SELECT_, ATTR_NAME_, "UNITS",
 PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
 "Degrees north “,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
short time; /* `Time' value. */
char vectorA[3]; /* `vectorA' values. */
double vectorB[5]; /* `vectorB' values. */
long recNumber; /* Record number. */
char buffer[45]; /* Buffer of full-physical records. */
long varNumbers[3]; /* Variable numbers. */
.
.
status = CDFlib (GET_, zVAR_NUMBER_, "vectorB", &varNumbers[0],
 zVAR_NUMBER_, "time", &varNumbers[1],
 zVAR_NUMBER_, "vectorA", &varNumbers[2],
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

121

for (recNumber = 0; recNumber < 100; recNumber++) {
 .
 /* read values from input file */
 .
 memmove (&buffer[0], vectorB, 40);
 memmove (&buffer[40], &time, 2);
 memmove (&buffer[42], vectorA, 3);
 status = CDFlib (SELECT_, zVARs_RECNUMBER_, recNumber,
 PUT__, zVARs_RECDATA_, 3L, varNumbers, buffer,
 NULL_);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

Note that it would be more e_cient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

6.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a C
application. Please don't do something like the following:

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */
.
.
status = CDFlib (SELECT_, CDF_, id,
 GET_, zVAR_NUMBER_, "EPOCH", &varNum,
 SELECT_, zVAR_, varNum, /* _ERROR! */
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET_,zVAR_NUMBER_> operation. What actually happens is that the zVariable number passed to the
<SELECT_,zVAR_> operation is undefined. This is because the C compiler is passing varNum by value rather than
reference.13 Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a
value. Only after the <GET_,zVAR_NUMBER_> operation is performed does varNum have a valid value. But at that
point it's too late since the argument list has already been created. In this type of situation you would have to make two
calls to CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

13 Fortran programmers can get away with doing something like this because everything is passed by reference.

122

6.9 Custom C Functions

Most of the Standard Interface functions callable from C applications are implemented as C macros that call CDFlib
(Internal Interface). For example, the CDFcreate function is actually defined as the following C macro:

#define CDFcreate(CDFname,numDims,dimSizes,encoding,majority,id) \
CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, id, \
 PUT__, CDF_ENCODING_, encoding, \
 CDF_MAJORITY_, majority, \
 NULL_)

These macros are defined in cdf.h. Where your application calls CDFcreate, the C compiler (preprocessor) expands the
macro into the corresponding call to CDFlib.

The exibility of CDFlib allows you to define your own custom CDF functions using C macros. For instance, a function
that inquires the format of a CDF could be defined as follows:

#define CDFinquireFormat(id,format) \
CDFlib (SELECT_, CDF_, id, \
 GET_, CDF_FORMAT_, format, \
 NULL_)

Your application would call the function as follows:
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format of CDF. */
.
.
status = CDFinquireFormat (id, &format);
if (status != CDF_OK) UserStatusHandler (status);
.
.

123

Chapter 7

Interpreting CDF Status Codes

Most CDF functions return a status code of type CDFstatus. The symbolic names for these codes are defined in cdf.h
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.

These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error

codes.

The following example shows how you could check the status code returned from CDF functions.

CDFstatus status;

.
.
status = CDFfunction (...); /* any CDF function returning CDFstatus */
if (status != CDF_OK) {
 UserStatusHandler (status, ...);
 .
 .
}

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

#include <stdio.h>
#include "cdf.h"
void UserStatusHandler (status)
CDFstatus status;
{
 char message[CDF_STATUSTEXT_LEN+1];

124

 if (status < CDF_WARN) {
 printf ("An error has occurred, halting...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 exit (status);
 }
 else {
 if (status < CDF_OK) {
 printf ("Warning, function may not have completed as expected...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 }
 else {
 if (status _> CDF_OK) {
 printf ("Function completed successfully, but be advised that...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 }
 }
 }
 return;
}

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

125

Chapter 8

8.1 computeEPOCH

computeEPOCH calculates a CDF_EPOCH value given the individual components. If An illegal component is
detected, the value returned will be -1.0.

long msec); /* in -- Millisecond (0-999). */

long *year, /* out -- Year (AD, e.g., 1994). */

EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH values. These functions may be
called by applications using the CDF_EPOCH data type and are included in the CDF library. Function prototypes for
these functions may be found in the include file cdf.h. The Concepts chapter in the CDF User's Guide describes
EPOCH values.

double computeEPOCH(/* out -- CDF_EPOCH value returned. */
long year, /* in -- Year (AD, e.g., 1994). */
long month, /* in -- Month (1-12). */
long day, /* in -- Day (1-31). */
long hour, /* in -- Hour (0-23). */
long minute, /* in -- Minute (0-59). */
long second, /* in -- Second (0-59). */

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

8.2 EPOCHbreakdown

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

void EPOCHbreakdown(
double epoch, /* in -- The CDF_EPOCH value. */

126

long *month, /* out -- Month (1-12). */
long *day, /* out -- Day (1-31). */
long *hour, /* out -- Hour (0-23). */
long *minute, /* out -- Minute (0-59). */
long *second, /* out -- Second (0-59). */
long *msec); /* out -- Millisecond (0-999). */

double epoch; /* in -- The CDF_EPOCH value. */

double epoch; /* in -- The CDF_EPOCH value. */

8.3 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

void encodeEPOCH(

char epString[EPOCH_STRING_LEN+1]); /* out -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

8.4 encodeEPOCH1

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

void encodeEPOCH1(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH1_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

8.5 encodeEPOCH2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCH2(

char epString[EPOCH2_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH2_STRING_LEN is defined in cdf.h.

127

double epoch; /* in -- The CDF_EPOCH value. */

double epoch; /* in -- The CDF_EPOCH value. */

8.6 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

void encodeEPOCH3(

char epString[EPOCH3_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

8.7 encodeEPOCHx

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

void encodeEPOCHx(

char format[EPOCHx_FORMAT_MAX]; /* in ---The format string. */
char encoded[EPOCHx_STRING_MAX]); /* out -- The custom date/time character string. */

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>

mm Month (1,2,...,12) <mm.0>

yr Year (2-digit) <yr.02>

min Minute (00-59) <min.02>

fos Fraction of second. <fos.3>

month Month (`Jan',`Feb',...,`Dec') <month>

year Year (4-digit) <year.04>

hour Hour (00-23) <hour.02>

sec Second (00-59) <sec.02>

fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

128

For example, the format string used to encode the standard EPOCH date/time character string (see Section 8.3) would
be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

8.8 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 8.3. If an illegalfield is detected in the string the
value returned will be -1.0.

double parseEPOCH(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH_STRING_LEN+1]); /* in -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

8.9 parseEPOCH1

parseEPOCH1 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 function described in Section 8.4. If an illegalfield is detected in the
string the value returned will be -1.0.

double parseEPOCH1(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH1_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

8.10 parseEPOCH2

parseEPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH2 function described in Section 8.5. If an illegalfield is detected in the
string the value returned will be -1.0.

double parseEPOCH2(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH2_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH2_STRING_LEN is defined in cdf.h.

129

8.11 parseEPOCH3

parseEPOCH3 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 function described in Section 8.6. If an illegalfield is detected in the
string the value returned will be -1.0.

double parseEPOCH3(/* out -- CDF_EPOCH value returned. */

char epString[EPOCH3_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

130

131

Appendix A

Status Codes

Error Indicates that a fatal error occurred and the function aborted.

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be
used within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Status codes fall into classes as follows:

Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing

132

blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN

characters. The attribute was created but with a truncated name.
[Warning]

BAD_ALLOCATE_RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all

arguments are properly declared and initialized. [Error]

BAD_ATTR_NAME Illegal attribute name specified. Attribute names must contain at

least one character, and each character must be printable. [Error]

BAD_ATTR_NUM Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD_BLOCKING_FACTOR1 An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

BAD_CACHESIZE An illegal number of cache buffers was specified. The value

must be at least zero (0). [Error]

BAD_CDF_EXTENSION An illegal file extension was specified for a CDF. In general, do

not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

BAD_CDF_ID CDF identifier is unknown or invalid. The CDF identifier

specified is not for a currently open CDF. [Error]

BAD_CDF_NAME Illegal CDF name specified. CDF names must contain at least

one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

BAD_CDFSTATUS Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

BAD_COMPRESSION_PARM An illegal compression parameter was specified. [Error]

BAD_DATA_TYPE An unknown data type was specified or encountered. The CDF

data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

BAD_DECODING An unknown decoding was specified. The CDF decodings are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

1 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

133

BAD_DIM_COUNT Illegal dimension count specified. A dimension count must be at

least one (1) and not greater than the size of the dimension.
[Error]

BAD_DIM_INDEX One or more dimension index is out of range. A valid value must

be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

BAD_NEGtoPOSfp0_MODE An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_DIM_INTERVAL Illegal dimension interval specified. Dimension intervals must be

at least one (1). [Error]

BAD_DIM_SIZE Illegal dimension size specified. A dimension size must be at

least one (1). [Error]

BAD_ENCODING Unknown data encoding specified. The CDF encodings are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_ENTRY_NUM Illegal attribute entry number specified. Entry numbers must be

at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

BAD_FNC_OR_ITEM The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

BAD_FORMAT Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

BAD_INITIAL_RECS An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

BAD_MAJORITY Unknown variable majority specified. The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

BAD_MALLOC Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

BAD_NUM_DIMS The number of dimensions specified is out of the allowed range.

Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

BAD_NUM_ELEMS The number of elements of the data type is illegal. The number

of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

BAD_NUM_VARS Illegal number of variables in a record access operation. [Error]

134

BAD_READONLY_MODE Illegal read-only mode specified. The CDF read-only modes are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_REC_COUNT Illegal record count specified. A record count must be at least

one (1). [Error]

BAD_VAR_NAME Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

BAD_VAR_NUM Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD_zMODE Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for FortrAn applications.
[Error]

CANNOT_ALLOCATE_RECORDS Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

BAD_REC_INTERVAL Illegal record interval specified. A record interval must be at
least one (1). [Error]

BAD_REC_NUM Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

BAD_SCOPE Unknown attribute scope specified. The attribute scopes are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_SCRATCH_DIR An illegal scratch directory was specified. The scratch directory

must be writeable and accessable (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

BAD_SPARSEARRAYS_PARM An illegal sparse arrays parameter was specified. [Error]

CANNOT_CHANGE Because of dependencies on the value, it cannot be changed.

Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value

(excluding a pad value) has been written.

135

4. Changing a variable's data specification after a value

(including the pad value) has been written to that variable
or after records have been allocated for that variable.

9. Changing an attribute entry's data specification wherethe
new specification is not equivalent to the old
specification.

CANNOT_SPARSEARRAYS Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value

(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed

variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

CANNOT_COMPRESS The CDF or variable cannot be compressed. For CDFs, this

occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

CANNOT_SPARSERECORDS Sparse records cannot be specified for the variable. This occurs

if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

CDF_CLOSE_ERROR Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

CDF_CREATE_ERROR Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

CDF_DELETE_ERROR Cannot delete the CDF specified - error from file system.
Unsufficient privileges exist the delete the CDF file(s). [Error]

CDF_EXISTS The CDF named already exists - cannot create it. The CDF

library will not overwrite an existing CDF. [Error]

136

CDF_INTERNAL_ERROR An unexpected condition has occurred in the CDF library. Report

this error to CDFsupport. [Error]

CDF_NAME_TRUNC CDF file name truncated to CDF_PATHNAME_LEN characters.

The CDF was created but with a truncated name. [Warning]

CDF_OK Function completed successfully.

CDF OPEN_ERROR Cannot open the CDF specified - error from file system. Check

that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

CDF_READ_ERROR Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

CDF_WRITE_ERROR Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

END_OF_VAR The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

FORCED_PARAMETER A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

IBM_PC_OVERFLOW An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

COMPRESSION_ERROR An error occured while compressing a CDF or block of variable

records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

CORRUPTED_V2_CDF This Version 2 CDF is corrupted. An error has been detected in

the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

DECOMPRESSION_ERROR An error occured while decompressing a CDF or block of

variable records. The most likely cause is a corrupted dotCDF
file. [Error]

DID_NOT_COMPRESS For a compressed variable, a block of records did not compress to

smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm choosen is unsuitable. [Informational]

EMPTY_COMPRESSED_CDF The compressed CDF being opened is empty. This will result if a

program which was creating/modifying the CDF abnormally
terminated. [Error]

ILLEGAL_FOR_SCOPE The operation is illegal for the attribute's scope. For example,

only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

137

ILLEGAL_IN_zMODE The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal.
[Error]

ILLEGAL_ON_V1_CDF The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

MULTI_FILE_FORMAT The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

NO_SUCH_ATTR The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

NA_FOR_VARIABLE The attempted operation is not applicable to the given variable.

[Warning]

NEGATIVE_FP_ZERO One or more of the values read/written are -0.0 (An illegal value

on VAXes and DEC Alphas running OpenVMS). [Warning]

NO_ATTR_SELECTED An attribute has not yet been selected. First select the attribute on

which to perform the operation. [Error]

NO_CDF_SELECTED A CDF has not yet been selected. First select the CDF on which

to perform the operation. [Error]

NO_DELETE_ACCESS Deleting is not allowed (read-only access). Make sure that

delete access is allowed on the CDF file(s). [Error]

NO_ENTRY_SELECTED An attribute entry has not yet been selected. First select the entry

number on which to perform the operation. [Error]

NO_MORE_ACCESS Further access to the CDF is not allowed because of a severe

error. If the CDF was being modi_ed, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

NO_PADVALUE_SPECIFIED A pad value has not yet been specified. The default pad value is

currently being used for the variable. The default pad value was
returned. [Informational]

NO_STATUS SELECTED A CDF status code has not yet been selected. First select the

status code on which to perform the operation. [Error]

NO_SUCH_CDF The specified CDF does not exist. Check that the file name

specified is correct. [Error]

NO_SUCH_ENTRY No such entry for specified attribute. [Error]

NO_SUCH_RECORD The specified record does not exist for the given variable. [Error]

NO_SUCH_VAR The named variable was not found. Note that variable names are
case-sensitive. [Error]

138

NO_VAR_SELECTED A variable has not yet been selected. First select the variable on

which to perform the operation. [Error]

NO_VARS_IN_CDF This CDF contains no rVariables. The operation performed is

not applicable to a CDF with no rVariables. [Informational]

NO_WRITE_ACCESS Write access is not allowed on the CDF file(s). Make sure that

the CDF file(s) have the proper file system privileges and
ownership. [Error]

NOT_A_CDF Named CDF is corrupted or not actually a CDF. This can also

occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file is a CDF that should
be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

PRECEEDING_RECORDS_ALLOCATED Because of the type of variable, records preceding the range of

records being allocated were automatically allocated as well.
[Informational]

READ_ONLY_DISTRIBUTION Your CDF distribution has been built to allow only read access to

CDFs. Check with your system manager if you require write
access. [Error]

READ_ONLY_MODE The CDF is in read-only mode - modifications are not allowed.

[Error]

SCRATCH_CREATE_ERROR Cannot create a scratch file - error from file system. If a scratch

directory has been specified, ensure that it is writable. [Error]

SCRATCH_DELETE_ERROR Cannot delete a scratch file - error from file system. [Error]

SCRATCH_READ_ERROR Cannot read from a scratch file - error from file system. [Error]

SCRATCH_WRITE_ERROR Cannot write to a scratch file - error from file system. [Error]

SINGLE_FILE_FORMAT The specified operation is not applicable to CDFs with the single-

file format. For example, it does not make sense to close a
variable in a single-file CDF. [Informational]

SOME_ALREADY_ALLOCATED Some of the records being allocated were already allocated.

[Informational]

TOO_MANY_PARMS A type of sparse arrays or compression was encountered having

too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modi_ed by a CDF distribution more
recent than the one being used. [Error]

TOO_MANY_VARS A multi-file CDF on a PC may contain only a limited number of

variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

UNKNOWN_COMPRESSION An unknown type of compression was specified or encountered.
[Error]

139

UNKNOWN_SPARSENESS An unknown type of sparseness was specified or encountered.

[Error]

UNSUPPORTED_OPERATION The attempted operation is not supported at this time. [Error]

VAR_ALREADY_CLOSED The specified variable is already closed. [Informational]

VAR_CLOSE_ERROR Error detected while trying to close variable file. Check that

sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

VAR_CREATE_ERROR An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

VAR_DELETE_ERROR An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

VAR_EXISTS Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

VAR_NAME_TRUNC Variable name truncated to CDF_VAR_NAME_LEN characters.

The variable was created but with a truncated name. [Warning]

VAR_OPEN_ERROR An error occurred while opening variable file. Check that

suffient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

VAR_READ_ERROR Failed to read variable as requested - error from file system.

Check that the associated file is not corrupted. [Error]

VAR_WRITE_ERROR Failed to write variable as requested - error from file system.

Check that the associated file is not corrupted. [Error]

VIRTUAL_RECORD_DATA One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

140

141

Appendix B

C Programming Summary

B.1 Standard Interface

CDFstatus CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)
char *CDFname; /* in */
long numDims; /* in */
long dimSizes[]; /* in */
long encoding; /* in */
long majority; /* in */
CDFid *id; /* out */

CDFstatus CDFopen (CDFname, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFid id; /* in */

long *maxRec; /* out */

long *numAttrs; /* out */

CDFstatus CDFclose (id)

CDFstatus CDFdoc (id, version, release, text)

long *version; /* out */
long *release; /* out */
char text[CDF_DOCUMENT_LEN+1]; /* out */

CDFstatus CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec,
 numVars, numAttrs)
CDFid id; /* in */
long *numDims; /* out */
long dimSizes[CDF_MAX_DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */

long *numVars; /* out */

CDFid id; /* in */

CDFstatus CDFdelete (id)
CDFid id; /* in */

142

CDFstatus CDFerror (status, message)
CDFstatus status; /* in */
char message[CDF_STATUSTEXT_LEN+1]; /* out */

CDFstatus CDFattrCreate (id, attrName, attrScope, attrNum)
CDFid id; /* in */
char *attrName; /* in */
long attrScope; /* in */
long *attrNum; /* out */

long CDFattrNum (id, attrName)

long numElements; /* in */

CDFid id; /* in */
char *attrName; /* in */

CDFstatus CDFattrRename (id, attrNum, attrName)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* in */

CDFstatus CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* out */
long *attrScope; /* out */
long *maxEntry; /* out */

CDFstatus CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElements; /* out */

CDFstatus CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */

void *value; /* in */

CDFstatus CDFattrGet (id, attrNum, entryNum, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
void *value; /* out */

CDFstatus CDFvarCreate (id, varName, dataType, numElements, recVariances, dimVariances, varNum)
CDFid id; /* in */
char *varName; /* in */
long dataType; /* in */
long numElements; /* in */
long recVariance; /* in */
long dimVariances[]; /* in */
long *varNum; /* out */

143

long CDFvarNum (id, varName)
CDFid id; /* in */
char *varName; /* in */

CDFstatus CDFvarRename (id, varNum, varName)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* in */

CDFstatus CDFvarInquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* out */
long *dataType; /* out */
long *numElements; /* out */
long *recVariance; /* out */
long dimVariances[CDF_MAX_DIMS]; /* out */

long indices[]; /* in */

void *buffer; /* out */

CDFstatus CDFvarPut (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */

void *value; /* in */

CDFstatus CDFvarGet (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long indices[]; /* in */
void *value; /* out */

CDFstatus CDFvarHyperPut (id, varNum, recStart, recCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recStart; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */
void *buffer; /* in */

CDFstatus CDFvarHyperGet (id, varNum, recStart, recCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recStart; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */

144

CDFstatus CDFvarClose (id, varNum)

long varNum; /* in */

long numVars; /* in */

char *varNames[]; /* in */

CDFid id; /* in */

CDFstatus CDFgetrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */

char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* out */

CDFstatus CDFgetrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */

long varRecNum; /* in */
void *buffer[]; /* out */

CDFstatus CDFputrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* in */

CDFstatus CDFputzVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* in */

145

B.2 Internal Interface

CDFstatus CDFlib (op, ...)
long op; /* in */

CLOSE_
CDF_
rVAR_
zVAR_

gENTRY_ long *entryNum /* out */

rENTRY_ long *entryNum /* out */

CONFIRM_

ATTR_ long *attrNum /* out */
ATTR_EXISTENCE_ char *attrName /* in */
CDF_ CDFid *id /* out */
CDF_ACCESS_
CDF_CACHESIZE_ long *numBuffers /* out */
CDF_DECODING_ long *decoding /* out */
CDF_NAME_ char CDFname[CDF_PATHNAME_LEN+1]

/* out */
CDF_NEGtoPOSfp0_MODE_ long *mode /* out */
CDF_READONLY_MODE_ long *mode /* out */
CDF_STATUS_ CDFstatus *status /* out */
CDF_zMODE_ long *mode /* out */
COMPRESS_CACHESIZE_ long *numBuffers /* out */
CURgENTRY_EXISTENCE_
CURrENTRY_EXISTENCE_
CURzENTRY_EXISTENCE_

gENTRY_EXISTENCE_ long entryNum /* in */

rENTRY_EXISTENCE_ long entryNum /* in */
rVAR_ long *varNum /* out */
rVAR_CACHESIZE_ long *numBuffers /* out */
rVAR_EXISTENCE_ char *varName /* in */
rVAR_PADVALUE_
rVAR_RESERVEPERCENT_ long *percent /* out */
rVAR_SEQPOS_ long *recNum /* out */

long indices[CDF_MAX_DIMS] /* out */
rVARs_DIMCOUNTS_ long counts[CDF_MAX_DIMS] /* out */
rVARs_DIMINDICES_ long indices[CDF_MAX_DIMS] /* out */
rVARs_DIMINTERVALS_ long intervals[CDF_MAX_DIMS] /* out */
rVARs_RECCOUNT_ long *recCount /* out */
rVARs_RECINTERVAL_ long *recInterval /* out */
rVARs_RECNUMBER_ long *recNum /* out */
STAGE_CACHESIZE_ long *numBuffers /* out */
zENTRY_ long *entryNum /* out */
zENTRY_EXISTENCE_ long entryNum /* in */
zVAR_ long *varNum /* out */
zVAR_CACHESIZE_ long *numBuffers /* out */
zVAR_DIMCOUNTS_ long counts[CDF_MAX_DIMS] /* out */
zVAR_DIMINDICES_ long indices[CDF_MAX_DIMS] /* out */
zVAR_DIMINTERVALS_ long intervals[CDF_MAX_DIMS] /* out */
zVAR_EXISTENCE_ char *varName /* in */
zVAR_PADVALUE_
zVAR_RECCOUNT_ long *recCount /* out */

146

zVAR_RECINTERVAL_ long *recInterval /* out */

ATTR_ char *attrName /* in */

long *attrNum /* out */

CDF_ char *CDFname /* in */

long dimSizes[] /* in */

long numElements /* in */

long dimVarys[] /* in */

CDF_

rENTRY_

rVAR_RECORDS_ long firstRecord /* in */

long lastRecord /* in */

GET_

ATTR_MAXrENTRY_ long *maxEntry /* out */

ATTR_NAME_ char attrName[CDF_ATTR_NAME_LEN+1]

ATTR_NUMrENTRIES_ long *numEntries /* out */

zVAR_RECNUMBER_ long *recNum /* out */
zVAR_RESERVEPERCENT_ long *percent /* out */
zVAR_SEQPOS_ long *recNum /* out */

long indices[CDF_MAX_DIMS] /* out */

CREATE_

long scope /* in */

long numDims /* in */

CDFid *id /* out */

rVAR_ char *varName /* in */
long dataType /* in */

long recVary /* in */

long *varNum /* out */

zVAR_ char *varName /* in */
long dataType /* in */
long numElements /* in */
long numDims /* in */
long dimSizes[] /* in */
long recVary /* in */
long dimVarys[] /* in */
long *varNum /* out */

DELETE_

ATTR_

gENTRY_

rVAR_

long lastRecord /* in */
zENTRY_
zVAR_
zVAR_RECORDS_ long firstRecord /* in */

ATTR_MAXgENTRY_ long *maxEntry /* out */

ATTR_MAXzENTRY_ long *maxEntry /* out */

/* out */
ATTR_NUMBER_ char *attrName /* in */

long *attrNum /* out */
ATTR_NUMgENTRIES_ long *numEntries /* out */

ATTR_NUMzENTRIES_ long *numEntries /* out */

147

ATTR_SCOPE_ long *scope /* out */

long cParms[CDF_MAX_PARMS] /* out */

CDF_NUMgATTRS_ long *numAttrs /* out */

CDF_NUMvATTRS_ long *numAttrs /* out */

CDF_RELEASE_ long *release /* out */

LIB_COPYRIGHT_ char copyRight[CDF_COPYRIGHT_LEN+1]

LIB_INCREMENT_ long *increment /* out */

long cParms[CDF_MAX_PARMS] /* out */

CDF_COMPRESSION_ long *cType /* out */

long *cPct /* out */
CDF_COPYRIGHT_ char copyRight[CDF_COPYRIGHT_LEN+1]

/* out */
CDF_ENCODING_ long *encoding /* out */
CDF_FORMAT_ long *format /* out */
CDF_INCREMENT_ long *increment /* out */
CDF_INFO_ char *name /* in */

long *cType /* out */
long cParms[CDF_MAX_PARMS] /* out */
long *cSize /* out */
long *uSize /* out */

CDF_MAJORITY_ long *majority /* out */
CDF_NUMATTRS_ long *numAttrs /* out */

CDF_NUMrVARS_ long *numVars /* out */

CDF_NUMzVARS_ long *numVars /* out */

CDF_VERSION_ long *version /* out */
DATATYPE_SIZE_ long dataType /* in */

long *numBytes /* out */
gENTRY_DATA_ void *value /* out */
gENTRY_DATATYPE_ long *dataType /* out */
gENTRY_NUMELEMS_ long *numElements /* out */

/* out */

LIB_RELEASE_ long *release /* out */
LIB_subINCREMENT_ char *subincrement /* out */
LIB_VERSION_ long *version /* out */
rENTRY_DATA_ void *value /* out */
rENTRY_DATATYPE_ long *dataType /* out */
rENTRY_NUMELEMS_ long *numElements /* out */
rVAR_ALLOCATEDFROM_ long startRecord /* in */

long *nextRecord /* out */
rVAR_ALLOCATEDTO_ long startRecord /* in */

long *lastRecord /* out */
rVAR_BLOCKINGFACTOR_ long *blockingFactor /* out */
rVAR_COMPRESSION_ long *cType /* out */

long *cPct /* out */
rVAR_DATA_ void *value /* out */
rVAR_DATATYPE_ long *dataType /* out */
rVAR_DIMVARYS_ long dimVarys[CDF_MAX_DIMS] /* out */
rVAR_HYPERDATA_ void *buffer /* out */
rVAR_MAXallocREC_ long *maxRec /* out */
rVAR_MAXREC_ long *maxRec /* out */
rVAR_NAME_ char varName[CDF_VAR_NAME_LEN+1] /* out */
rVAR_nINDEXENTRIES_ long *numEntries /* out */
rVAR_nINDEXLEVELS_ long *numLevels /* out */
rVAR_nINDEXRECORDS_ long *numRecords /* out */
rVAR_NUMallocRECS_ long *numRecords /* out */
rVAR_NUMBER_ char *varName /* in */

148

long *varNum /* out */

rVAR_NUMELEMS_ long *numElements /* out */
rVAR_NUMRECS_ long *numRecords /* out */
rVAR_PADVALUE_ void *value /* out */
rVAR_RECVARY_ long *recVary /* out */
rVAR_SEQDATA_ void *value /* out */
rVAR_SPARSEARRAYS_ long *sArraysType /* out */

long sArraysParms[CDF_MAX_PARMS] /* out */
long *sArraysPct /* out */

rVAR_SPARSERECORDS_ long *sRecordsType /* out */
rVARs_DIMSIZES_ long dimSizes[CDF_MAX_DIMS] /* out */
rVARs_MAXREC_ long *maxRec /* out */
rVARs_NUMDIMS_ long *numDims /* out */
rVARs_RECDATA_ long numVars /* in */

long varNums[] /* in */
void *buffer /* out */

STATUS_TEXT_ char text[CDF_STATUSTEXT_LEN+1] /* out */
zENTRY_DATA_ void *value /* out */
zENTRY_DATATYPE_ long *dataType /* out */
zENTRY_NUMELEMS_ long *numElements /* out */
zVAR_ALLOCATEDFROM_ long startRecord /* in */

long *nextRecord /* out */
zVAR_ALLOCATEDTO_ long startRecord /* in */

long *lastRecord /* out */
zVAR_BLOCKINGFACTOR_ long *blockingFactor /* out */
zVAR_COMPRESSION_ long *cType /* out */

long *cPct /* out */

zVAR_MAXREC_ long *maxRec /* out */

zVAR_nINDEXENTRIES_ long *numEntries /* out */

zVAR_nINDEXRECORDS_ long *numRecords /* out */

zVAR_NUMBER_ char *varName /* in */

zVAR_NUMDIMS_ long *numDims /* out */

zVAR_NUMRECS_ long *numRecords /* out */

zVAR_RECVARY_ long *recVary /* out */

zVAR_SPARSEARRAYS_ long *sArraysType /* out */

zVAR_SPARSERECORDS_ long *sRecordsType /* out */

zVARs_RECDATA_ long numVars /* in */

long cParms[CDF_MAX_PARMS] /* out */

zVAR_DATA_ void *value /* out */
zVAR_DATATYPE_ long *dataType /* out */
zVAR_DIMSIZES_ long dimSizes[CDF_MAX_DIMS] /* out */
zVAR_DIMVARYS_ long dimVarys[CDF_MAX_DIMS] /* out */
zVAR_HYPERDATA_ void *buffer /* out */
zVAR_MAXallocREC_ long *maxRec /* out */

zVAR_NAME_ char varName[CDF_VAR_NAME_LEN+1] /* out */

zVAR_nINDEXLEVELS_ long *numLevels /* out */

zVAR_NUMallocRECS_ long *numRecords /* out */

long *varNum /* out */

zVAR_NUMELEMS_ long *numElements /* out */

zVAR_PADVALUE_ void *value /* out */

zVAR_SEQDATA_ void *value /* out */

long sArraysParms[CDF_MAX_PARMS] /* out */
long *sArraysPct /* out */

zVARs_MAXREC_ long *maxRec /* out */

long varNums[] /* in */
void *buffer /* out */

149

NULL_

OPEN_

CDF_ char *CDFname /* in */
CDFid *id /* out */

PUT__
ATTR_NAME_ char *attrName /* in */
ATTR_SCOPE_ long scope /* in */
CDF_COMPRESSION_ long cType /* in */

long cParms[] /* in */
CDF_ENCODING_ long encoding /* in */
CDF_FORMAT_ long format /* in */
CDF_MAJORITY_ long majority /* in */
gENTRY_DATA_ long dataType /* in */

long numElements /* in */
void *value /* in */

gENTRY_DATASPEC_ long dataType /* in */
long numElements /* in */

rENTRY_DATA_ long dataType /* in */
long numElements /* in */

long numElements /* in */

rVAR_HYPERDATA_ void *buffer /* in */

rVAR_NAME_ char *varName /* in */

long varNums[] /* in */

long numElements /* in */

long lastRecord /* in */

zVAR_BLOCKINGFACTOR_ long blockingFactor /* in */

long cParms[] /* in */

void *value /* in */
rENTRY_DATASPEC_ long dataType /* in */

long numElements /* in */
rVAR_ALLOCATEBLOCK_ long firstRecord /* in */

long lastRecord /* in */
rVAR_ALLOCATERECS_ long numRecords /* in */
rVAR_BLOCKINGFACTOR_ long blockingFactor /* in */
rVAR_COMPRESSION_ long cType /* in */

long cParms[] /* in */
rVAR_DATA_ void *value /* in */
rVAR_DATASPEC_ long dataType /* in */

rVAR_DIMVARYS_ long dimVarys[] /* in */

rVAR_INITIALRECS_ long nRecords /* in */

rVAR_PADVALUE_ void *value /* in */
rVAR_RECVARY_ long recVary /* in */
rVAR_SEQDATA_ void *value /* in */
rVAR_SPARSEARRAYS_ long sArraysType /* in */

long sArraysParms[] /* in */
rVAR_SPARSERECORDS_ long sRecordsType /* in */
rVARs_RECDATA_ long numVars /* in */

void *buffer /* in */
zENTRY_DATA_ long dataType /* in */

long numElements /* in */
void *value /* in */

zENTRY_DATASPEC_ long dataType /* in */

zVAR_ALLOCATEBLOCK_ long firstRecord /* in */

zVAR_ALLOCATERECS_ long numRecords /* in */

zVAR_COMPRESSION_ long cType /* in */

150

zVAR_DATA_ void *value /* in */
zVAR_DATASPEC_ long dataType /* in */

long numElements /* in */
zVAR_DIMVARYS_ long dimVarys[] /* in */
zVAR_INITIALRECS_ long nRecords /* in */
zVAR_HYPERDATA_ void *buffer /* in */
zVAR_NAME_ char *varName /* in */

zVAR_RECVARY_ long recVary /* in */

zVAR_SPARSEARRAYS_ long sArraysType /* in */

CDF_SCRATCHDIR_ char *dirPath /* in */

rVARs_RECCOUNT_ long recCount /* in */

zVAR_DIMINDICES_ long indices[] /* in */

zVAR_NAME_ char *varName /* in */

zVAR_RECINTERVAL_ long recInterval /* in */

zVAR_PADVALUE_ void *value /* in */

zVAR_SEQDATA_ void *value /* in */

long sArraysParms[] /* in */
zVAR_SPARSERECORDS_ long sRecordsType /* in */
zVARs_RECDATA_ long numVars /* in */

long varNums[] /* in */
void *buffer /* in */

SELECT_
ATTR_ long attrNum /* in */
ATTR_NAME_ char *attrName /* in */
CDF_ CDFid id /* in */
CDF_CACHESIZE_ long numBuffers /* in */
CDF_DECODING_ long decoding /* in */
CDF_NEGtoPOSfp0_MODE_ long mode /* in */
CDF_READONLY_MODE_ long mode /* in */

CDF_STATUS_ CDFstatus status /* in */
CDF_zMODE_ long mode /* in */
COMPRESS_CACHESIZE_ long numBuffers /* in */
gENTRY_ long entryNum /* in */
rENTRY_ long entryNum /* in */
rENTRY_NAME_ char *varName /* in */
rVAR_ long varNum /* in */
rVAR_CACHESIZE_ long numBuffers /* in */
rVAR_NAME_ char *varName /* in */
rVAR_RESERVEPERCENT_ long percent /* in */
rVAR_SEQPOS_ long recNum /* in */

long indices[] /* in */
rVARs_CACHESIZE_ long numBuffers /* in */
rVARs_DIMCOUNTS_ long counts[] /* in */
rVARs_DIMINDICES_ long indices[] /* in */
rVARs_DIMINTERVALS_ long intervals[] /* in */

rVARs_RECINTERVAL_ long recInterval /* in */
rVARs_RECNUMBER_ long recNum /* in */
STAGE_CACHESIZE_ long numBuffers /* in */
zENTRY_ long entryNum /* in */
zENTRY_NAME_ char *varName /* in */
zVAR_ long varNum /* in */
zVAR_CACHESIZE_ long numBuffers /* in */
zVAR_DIMCOUNTS_ long counts[] /* in */

zVAR_DIMINTERVALS_ long intervals[] /* in */

zVAR_RECCOUNT_ long recCount /* in */

zVAR_RECNUMBER_ long recNum /* in */

151

zVAR_RESERVEPERCENT_ long percent /* in */

long indices[] /* in */
zVAR_SEQPOS_ long recNum /* in */

zVARs_CACHESIZE_ long numBuffers /* in */
zVARs_RECNUMBER_ long recNum /* in */

152

B.3 EPOCH Utility Routines

void encodeEPOCH3 (epoch, epString)

double epoch; /* in */

char epString[EPOCHx_STRING_MAX+1]; /* out */

char epString[EPOCH2_STRING_LEN+1]; /* in */

double computeEPOCH (year, month, day, hour, minute, second, msec)
long year; /* in */
long month; /* in */
long day; /* in */
long hour; /* in */
long minute; /* in */
long second; /* in */
long msec; /* in */

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
double epoch; /* in */
long *year; /* out */
long *month; /* out */
long *day; /* out */
long *hour; /* out */
long *minute; /* out */
long *second; /* out */
long *msec; /* out */

void encodeEPOCH (epoch, epString)
double epoch; /* in */
char epString[EPOCH_STRING_LEN+1]; /* out */

void encodeEPOCH1 (epoch, epString)
double epoch; /* in */
char epString[EPOCH1_STRING_LEN+1]; /* out */

void encodeEPOCH2 (epoch, epString)
double epoch; /* in */
char epString[EPOCH2_STRING_LEN+1]; /* out */

double epoch; /* in */
char epString[EPOCH3_STRING_LEN+1]; /* out */

void encodeEPOCHx (epoch, format, epString)

char format[EPOCHx_FORMAT_MAX+1]; /* in */

double parseEPOCH (epString)
char epString[EPOCH_STRING_LEN+1]; /* in */

double parseEPOCH1 (epString)
char epString[EPOCH1_STRING_LEN+1]; /* in */

double parseEPOCH2 (epString)

double parseEPOCH3 (epString)
char epString[EPOCH3_STRING_LEN+1]; /* in */

153

Index

ALPHAOSF1_DECODING, 16
ALPHAOSF1_ENCODING, 15

ALPHAVMSd_ENCODING, 15

deleting, 75

current, 59

inquiring, 24

max length, 20

constants

ALPHAVMSd_DECODING, 16

ALPHAVMSi_DECODING, 16

HOST_DECODING, 16

MAC_DECODING, 17

NeXT_DECODING, 16

standard interface, 21

inquiring, 83

CDF$LIB, 5

C programming interface
summary, 142

ALPHAVMSd_DECODING, 16 CDF library
copy right notice

ALPHAVMSg_DECODING, 16
ALPHAVMSg_ENCODING, 15 reading, 83
ALPHAVMSi_DECODING, 16 internal interface, 56
ALPHAVMSi_ENCODING, 15 modes
attributes -0.0 to 0.0

creating, 28, 72 confirming, 65
current, 59 constants

confirming, 64 NEGtoPOSfp0off, 20
selecting NEGtoPOSfp0on, 20

by name, 110 selecting, 110
by number, 109 decoding

confirming, 65
entries

ALPHAOSF1_DECODING, 16
confirming, 66, 67, 70
selecting ALPHAVMSg_DECODING, 16

by name, 112, 114
by number, 112, 114 DECSTATION_DECODING, 16

data specification
changing, 33, 100, 105 HP_DECODING, 16
data type IBMRS_DECODING, 16

inquiring, 32, 82, 84, 91
number of elements NETWORK_DECODING, 16

inquiring, 32, 82, 84, 91
deleting, 75, 76 PC_DECODING, 16
existence, determining, 67, 70 SGi_DECODING, 16
maximum SUN_DECODING, 16

inquiring, 31, 77 VAX_DECODING, 16
number of selecting, 110

inquiring, 78 read-only
reading, 35, 82, 83, 90 confirming, 65
writing, 33, 99, 100, 105 constants

existence, determining, 64 READONLYoff, 19
naming, 20, 28 READONLYon, 19

inquiring, 31, 77 selecting, 19, 110
renaming, 30, 98 zMode

number of confirming, 65
inquiring, 80 constants

numbering zMODEoff, 19
inquiring, 29, 78 zMODEon1, 20

numberng, 13 zMODEon2, 20
numberof selecting, 19, 111

shared CDF library, 9
scopes

changing, 98 version
constants, 19

GLOBAL_SCOPE, 19 CDF$INC, 1
VARIABLE_SCOPE, 19

inquiring, 31, 79 cdf.h, 1, 13

154

CDF_ATTR_NAME_LEN, 20

CDF_EPOCH, 14

CDF_FLOAT, 14

CDF_INT1, 14

CDF_PATHNAME_LEN, 20

CDF_REAL8, 14

CDFinquire, 24

CDFopen, 22

CDFputzVarsRecordData, 52

inquiring, 79, 85, 92

encoding

constants, 15

ALPHAVMSd_ENCODING, 15

ALPHAVMSi_ENCODING, 15

HP_ENCODING, 15

MAC_ENCODING, 16

specifying, 111

CDFvarNum, 38

reserve percentage

selecting, 112, 116

current, 58
CDF_BYTE, 14 confirming, 64
CDF_CHAR, 14 selecting, 110
CDF_COPYRIGHT_LEN, 20 deleting, 26, 75
CDF_DOUBLE, 14

changing, 98
CDF_error or CDFerror, 132

ALPHAOSF1_ENCODING, 15
CDF_INC, 2

ALPHAVMSg_ENCODING, 15
CDF_INT2, 14
CDF_INT4, 14 DECSTATION_ENCODING, 15
CDF_LIB, 6 HOST_ENCODING, 15
CDF_MAX_DIMS, 20
CDF_MAX_PARMS, 20 IBMRS_ENCODING, 15
CDF_OK, 14

NETWORK_ENCODING, 15
CDF_REAL4, 14 NeXT_ENCODING, 15

PC_ENCODING, 15
CDF_STATUSTEXT_LEN, 20 SGi_ENCODING, 15
CDF_UCHAR, 14 SUN_ENCODING, 15
CDF_UINT1, 14 VAX_ENCODING, 15
CDF_UINT2, 14 default, 15
CDF_UINT4, 14 inquiring, 24, 79
CDF_VAR_NAME_LEN, 20 format
CDF_WARN, 14 changing, 99
CDFattrCreate, 28 constants
CDFattrEntryInquire, 32 MULTI_FILE, 14
CDFattrGet, 35 SINGLE_FILE, 14
CDFattrInquire, 31 default, 14
CDFattrNum, 29 inquiring, 79
CDFattrPut, 33 naming, 20, 21, 23
CDFattrRename, 30 nulling, 97
CDFclose, 26 opening, 22, 98
CDFcreate, 21 overwriting, 21
CDFdelete, 26 scratch directory
CDFdoc, 23
CDFerror, 27 version
CDFgetrVarsRecordData, 48 inquiring, 23, 80, 81
CDFgetzVarsRecordData, 51 CDFstatus, 13
CDFid, 13 CDFvarClose, 47

CDFvarCreate, 36
CDFlib, 56 CDFvarGet, 42

CDFvarHyperGet, 45
CDFputrVarsRecordData, 49 CDFvarHyperPut, 43

CDFvarInquire, 40
CDFs

accessing, 22, 64 CDFvarPut, 41
browsing, 19 CDFvarRename, 39
cache buffers COLUMN_MAJOR, 17

confirming, 64, 66, 67, 69, 70 Compiling, 1
selecting, 110, 111, 112, 113, 114, 115, 117 compression

closing, 26, 63 CDF
compression inquiring, 79, 80

specifying, 98
specifying, 98 types/parameters, 18

compression types/parameters, 18 variables
copy right notice inquiring, 85, 92

max length, 20
reading, 23, 79 confirming, 68, 72

corrupted, 21
creating, 21, 73 specifying, 101, 106

155

computeEPOCH, 126 number, 29
data types CDF, 24, 25

constants, 14 format, 123
CDF_BYTE, 14 error code explanation text, 28
CDF_CHAR, 14 rVariable, 40
CDF_DOUBLE, 14 number, 38
CDF_EPOCH, 14 Internal Interface, 56, 117
CDF_FLOAT, 14 interpreting
CDF_INT1, 14 status codes, 124
CDF_INT2, 14 opening
CDF_INT4, 14 CDF, 23
CDF_REAL4, 14 reading
CDF_REAL8, 14 attribute entry, 35
CDF_UCHAR, 14 rVariable values
CDF_UINT1, 14
CDF_UINT2, 14

computing, 126

parseEPOCH2, 129

EPOCHbreakdown, 126

closing

rVariable, 47

attribute, 28

rVariable, 37, 117

hyper, 44

rVariables, 49

IBMRS_ENCODING, 15

interfaces

examples, 56, 117

hyper, 46, 118
single, 43

CDF_UINT4, 14 rVariables, 48
inquiring size, 82 rVariables full record, 48

DECSTATION_DECODING, 16 zVariable values
DECSTATION_ENCODING, 15 sequential, 120
definitions file, 1, 5 zVariables, 51
DEFINITIONS.COM, 1, 5 zVariables full record, 51
dimensions renaming

limit, 20 attributes, 30, 119
numbering, 13 rVariable, 39

encodeEPOCH, 127 status handler, 124
encodeEPOCH1, 127 writing
encodeEPOCH2, 127 attribute
encodeEPOCH3, 128 gEntry, 34
encodeEPOCHx, 128 rEntry, 34, 121
EPOCH rVariable values

decomposing, 126 single, 41
encoding, 127, 128
parsing, 129, 130 rVariables full record, 50
utility routines, 126 zVariable, 52

computeEPOCH, 126 zVariable values
encodeEPOCH, 127 multiple variable, 121
encodeEPOCH1, 127 zVariables full record, 53
encodeEPOCH2, 127 function prototypes, 21
encodeEPOCH3, 128 GLOBAL_SCOPE, 19
encodeEPOCHx, 128 HOST_DECODING, 16
EPOCHbreakdown, 126 HOST_ENCODING, 15
parseEPOCH, 129 HP_DECODING, 16
parseEPOCH1, 129 HP_ENCODING, 15

IBMRS_DECODING, 16
parseEPOCH3, 130

include files, 1
examples

Internal, 56
CDF, 26 Standard, 21

Internal Interface, 56
creating common mistakes, 122

currnt objects/states, 58
CDF, 22, 56 attribute, 59

attribute entries, 59
zVariable, 118 CDF, 58

deleting records/dimensions, 59, 60, 61
CDF, 27 sequential value, 60, 61

inquiring status code, 61
attribute, 31 variables, 59

entry, 33

156

Indentation/Style, 62 specifying, 104, 108
Operations, 63 types, 19
status codes, returned, 62
syntax, 62

argument list, 62
limitations, 62

item referencing, 13

libcdf.lib, 6

dimensions, 20

NO_SPARSEARRAYS, 19

linking, 5

inquiring, 89, 96

types, 18

status codes

CDF_OK, 14

deleting, 76

confirming, 69, 71

dimension intervals

sparse records

specifying, 104, 109

Standard Interface, 21
libcdf.a, 6

constants, 13, 124
libcdf.o, 8
LIBCDF.OLB, 5, 6 CDF_WARN, 14
limits current, 61

attribute name, 20 confirming, 65
copyright text, 20 selecting, 111

error, 132
explanation/status text, 20 explanation text
file name, 20 inquiring, 27, 90
parameters, 20 max length, 20
variable name, 20 explanation text, 132

linking, 5 informational, 132
shareable CDF library, 9 interpreting, 124, 132

MAC_DECODING, 17 status handler, example, 121
MAC_ENCODING, 16 warning, 132
MULTI_FILE, 14 SUN_DECODING, 16
NEGtoPOSfp0off, 20 SUN_ENCODING, 15
NEGtoPOSfp0on, 20 VARIABLE_SCOPE, 19
NETWORK_DECODING, 16 variables
NETWORK_ENCODING, 15 accessing
NeXT_DECODING, 16 hyper values, 45
NeXT_ENCODING, 15 single value, 42
NO_COMPRESSION, 18 aparse arrays

inquiring, 89, 96, 104, 108
NO_SPARSERECORDS, 18 types, 19
NOVARY, 17 closing, 47, 64
PAD_SPARSERECORDS, 19 compression
parseEPOCH, 129 confirming, 68, 72
parseEPOCH1, 129 inquiring, 79, 85, 92
parseEPOCH2, 129 selecting, 112, 116
parseEPOCH3, 130 specifying, 101, 106
PC_DECODING, 16 types/parameters, 18
PC_ENCODING, 15 creating, 36, 73, 74
PREV_SPARSERECORDS, 19 current, 59
programming interface, 13 confirming, 67, 70

compiling, 1 selecting
customizing, 123 by name, 112, 116

by number, 112, 115
typedef’s, 13 data specification

CDFid, 13 changing, 102, 106
CDFstatus, 13 data type

READONLYoff, 19 inquiring, 40, 85, 92
READONLYon, 19 number of elements
ROW_MAJOR, 17 inquiring, 40, 88, 95
rVariables

reading, 48 dimension counts
writing, 49 current, 60, 61

scratch directory confirming, 68, 70
specifying, 111 selecting, 113, 115

SGi_DECODING, 16 dimension indices, starting
SGi_ENCODING, 15 current, 60, 61
SINGLE_FILE, 14
sparse arrays selecting, 113, 115

inquiring, 89, 96

157

current, 60, 61

confirming, 69, 71

dimensionality

existence, determining, 68, 71

majority

considering, 17

inquiring, 88, 95

current, 60, 61

selecting, 114, 116

writing, 102, 107

selecting, 113, 115

inquiring, 24, 90, 95

indices
numbering, 13

changing, 99

constants, 17
COLUMN_MAJOR, 17
ROW_MAJOR, 17

default, 73
inquiring, 80

naming, 37
inquiring, 40, 86, 94
max length, 20
renaming, 39, 103, 108

number of, inquiring, 24, 81
numbering, 13

inquiring, 38, 87, 95
pad value

confirming, 68, 71

specifying, 103, 108
reading, 85, 86, 92, 93
record count

current, 60
confirming, 69, 71
selecting, 114, 116

record interval

confirming, 69, 71

record number, starting
current, 59, 60

confirming, 69, 72
selecting, 114, 116

records
allocated

inquiring, 84, 87, 91, 94
specifying, 100, 101, 105, 106

blocking factor
inquiring, 85, 92
specifying, 101, 106

deleting, 76
indexing

inquiring, 87, 94
initial

maximum
inquiring, 24, 86, 89, 93, 97

number of
inquiring, 88, 95

numbering, 13
sparse, 18

inquiring, 89, 96
specifying, 104, 109

variances
constants, 17

NOVARY, 17
VARY, 17

dimensional
inquiring, 85, 93
specifying, 102, 107

record
changing, 103, 108
inquiring, 88, 96

writing, 41, 43, 102, 107
VARY, 17
VAX_DECODING, 16
VAX_ENCODING, 15
zMODEoff, 19
zMODEon1, 20
zMODEon2, 20
zVariables

reading, 51
writing, 52

158

